Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:320=(32)10=910
230=(23)10=810
Vì 810<910
Suy ra:230<320
Mình chỉ biết làm câu dưới thôi à
Giải
Nhân cả 2 vế với 5 ta có
5A = 5^2 + 5^3 + 5^4 +........+ 5^2014
=> 5A - A = ( 5^2 + 5^3 + 5^4 +...+ 5^2014 ) - ( 5 + 5^2 + 5^3 + .... + 5^2013 )
4A = 5^2014 - 5
=> 4A + 5 = 5^2014 - 5 + 5
=> 4A + 5 = 5^2014
4A + 5 = ( 5^1009 )^2
Vì 5^1009 thuộc N => ( 5^1009 )^2 là 1 số chính phương
Vậy ......
nhớ k cho mình nha
\(A=5+5^2+5^3+...+5^8\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^6.30\)
Vì 30\(⋮\)30
\(\Rightarrow A⋮30\)\(\Rightarrow A\in B\left(30\right)\)
A=1/1+5+5^2+5^3+...+5^8+5+5^2+5^3+...+5^9=1/1+5+5^2+5^3+...+5^8+5.
Tương tự B=1/1+3+3^2+...+3^8+3
=>A>B.
k nha.
Vì tổng S có 100 SH
Mà 100 chia hết cho 2
Do đó ta có:
5+5^2+5^3+....+5^99+5^100
=(5+5^2)+(5^3+5^4)+...+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+...+5^99.(1+5)
=5.6+5^3.6+...+5^99.6
=6.(5+5^3+...+5^99)
Vì 6 chia hết cho 6
Nên 6.(5+5^3+...+5^99) cũng chia hết cho 6
Vậy S chia hết cho 6
\(S=5+5^2+5^3+5^4+....+5^{99}+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)
\(=\left[5\left(1+5\right)\right]+\left[5^3\left(1+5\right)\right]+....+\left[5^{99}\left(1+5\right)\right]\)
\(=5\cdot6+5^3\cdot6+....+5^{99}\cdot6\)
\(=6\left(5+5^3+....+5^{99}\right)\)
\(\Rightarrow S⋮6\)
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=1.\left(5+5^2\right)+5.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=\left(1+5+...+5^6\right)\left(5+5^2\right)\)
\(=\left(1+5+...+5^6\right).30\)chia hết cho 30.
\(A=5+5^2+5^3+........+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=1.\left(5+5^2\right)+5.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=1.30+5.30+...+5^6.30\)
\(=\left(1+5+...+5^6\right)30\text{chia hết cho 30.}\)
Ta có A = \(5+5^2+5^3+...+5^8\)
= \(\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^7+5^8\right)\)
= 30 + \(5^2\left(5+5^2\right)+....+5^6\left(5+5^2\right)\)
= \(30+5^2.30+5^3.30+...+5^6.30\)
= \(30\left(1+5^2+5^3+5^4+5^5+5^6\right)\) chia hết cho 30
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=1\left(5+25\right)+5^2\left(5+25\right)+5^4\left(5+25\right)+5^6\left(5+25\right)\)
\(=1.30+5^2.30+5^4.30+5^6.30\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\) (đpcm)