K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (16:32)

A = 5 + 5\(^2\) + ...+ 5\(^{50}\)

A x 5 = 5\(^2\) + 5\(^3\) + ... + 5\(^{51}\)

A x 5 - A = 5\(^2\) + 5\(^3\) + ... + 5\(^{51}\) - 5 - 5\(^2\) -..-5\(^{50}\)

A x (5 - 1) = (5\(^2\) - 5\(^2\))+..+(5\(^{50}-5^{50}\)) + (5\(^{51}\)- 5)

A x 4 = 0 + 0 + .. + 0 + 5\(^{51}\) - 5

A x 4 = 5\(^{51}\) - 5

A = (5\(^{51}\) - 5)/4

A = 5 + 5\(^2\) + ...+ 5\(^{50}\)

A = 5(1 + 5 + ... + 5\(^{49}\)) ⋮ 5 (đpcm)

A = 5 + 5\(^2\) + ...+ 5\(^{50}\)

Xét dãy số: 1; 2;...; 50

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là:

(50 - 1) : 1 + 1 = 50(số hạng)

Vì 50 : 2 = 25

Nên nhóm hai số hạng liên tiếp của A vào nhau ta được:

A = (5 + 5\(^2\)) + .. + (5\(^{49}\) + 5\(^{50}\))

A = 5(1 + 5) + ... + 5\(^{49}\).(1 + 5)

A = 5.6 + ... + 5\(^{49}\).6

A = 6.(5 + ... + 5\(^{49}\)) ⋮ 6 (đpcm)




7 giờ trước (17:39)

a: Ta có: \(A=5+5^2+5^3+\cdots+5^{49}+5^{50}\)

=>\(5A=5^2+5^3+\cdots+5^{51}\)

=>\(5A-A=5^2+5^3+\cdots+5^{51}-5-5^2-\cdots-5^{50}\)

=>\(4A=5^{51}-5\)

=>\(A=\frac{5^{51}-5}{4}\)

b: Ta có: \(A=5+5^2+5^3+\cdots+5^{49}+5^{50}\)

\(=5\left(1+5+5^2+\cdots+5^{48}+5^{49}\right)\) ⋮5

c: ta có: \(A=5+5^2+5^3+\cdots+5^{49}+5^{50}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{49}+5^{50}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{49}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{49}\right)\) ⋮6

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

8 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

22 tháng 12 2014

A=5+52+53+...+589+590 

A=(5+52+53)+(54+55+56)+...+(588+589+590)

A=5(1+5+52)+54(1+5+52)+...+588(1+5+52)

A=5.31+54.31+...+588.31

Vì A có thừa số 31

Nên => A chia hết cho 31 

A = 5 + 52 + 53 + ... + 589 + 590

A = ( 5 + 52 + 5) + ... + ( 588 + 589 + 590 )

A = 5( 1 + 5 + 52 ) + ... + 588(1 + 5 + 52 )

A = 5 . 31 + ... + 588 . 31

A = 31( 5 + ... + 588 ) chia hết cho 31

=> A chia hết cho 31

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

12 tháng 12 2021

TL:

A)   \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)

      \(5.A=5\left(5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)

       \(5A=5^2+5^3+5^4+...+5^{50}+5^{51}\)

        \(5A-A=\left(5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)

         \(4A=5^{51}-5\)

Vậy \(4A=5^{51}-5\left(đpcm\right)\)

B)      \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

          \(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{49}\left(1+5\right)\)

          \(A=5.6+5^3.6+...+5^{49}.6\)

           \(A=6.\left(5+5^3+...+5^{49}\right)⋮6\)

Vậy \(A\)chia hết cho 6 

HT!!~!

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)