Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A,\left(3x-1\right)\left(-2x+5\right)=0\)
\(\orbr{\begin{cases}3x-1=0\\-2x+5=0\end{cases}}\)
\(\orbr{\begin{cases}3x=1\\-2x=-5\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{5}{2}\end{cases}}\)
Bài 1:
a) \(33^{2x}:11^{2x}=81\)\(\Leftrightarrow\left(33:11\right)^{2x}=81\)
\(\Leftrightarrow3^{2x}=3^4\)\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b) \(\frac{x}{-5}=\frac{4}{21}\)\(\Leftrightarrow21x=-20\)\(\Leftrightarrow x=\frac{-20}{21}\)
Vậy \(x=\frac{-20}{21}\)
Bài 2:
\(A=\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+\left(3^2+3^6+3^{10}+3^{14}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2.\left(1+3^4+3^8+3^{12}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right).\left(1+3^2\right)}=\frac{1}{1+3^2}=\frac{1}{1+9}=\frac{1}{10}\)
\(33^{2x}:11^{2x}=81\)!
\(\left(33:11\right)^{2x}=81\)
\(3^{2x}=81\)
\(3^{2x}=3^4\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
vậy \(x=2\)
\(\frac{x}{-5}=\frac{4}{21}\)
x.21=-5.4
x.21=-20
x=-20:21
\(x=-\frac{20}{21}\)
vậy \(x=-\frac{20}{21}\)
bài 1:
a) \(4\dfrac{1}{2}x:\dfrac{5}{12}=0,5\) ; b)\(1,5+1\dfrac{1}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x:\dfrac{5}{12}=\dfrac{1}{2}\) \(\dfrac{3}{2}+\dfrac{5}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x\) \(=\dfrac{1}{2}.\dfrac{5}{12}\) \(\dfrac{5}{4}x=\dfrac{2}{3}-\dfrac{3}{2}\)
\(\dfrac{9}{2}x\) \(=\dfrac{5}{24}\) \(\dfrac{5}{4}x=\dfrac{-5}{6}\)
\(x\) \(=\dfrac{5}{24}:\dfrac{9}{2}\) \(x=\dfrac{-5}{6}:\dfrac{5}{4}\)
\(x\) \(=\dfrac{5}{108}\) \(x=\dfrac{-2}{3}\)
c) Cho mình hỏi x ở đâu vậy ???
d)\(\left(x-5\right):\dfrac{1}{3}=\dfrac{2}{5}\) e)\(\left(4,5-2x\right):\dfrac{3}{4}=1\dfrac{1}{3}\)
\(\left(x-5\right)\) \(=\dfrac{2}{5}.\dfrac{1}{3}\) \(\left(\dfrac{9}{2}-2x\right):\dfrac{3}{4}=\dfrac{4}{3}\)
\(x-5\) \(=\dfrac{2}{15}\) \(\dfrac{9}{2}-2x\) =\(\dfrac{4}{3}.\dfrac{3}{4}\)
\(x\) \(=\dfrac{2}{15}+5\) \(\dfrac{9}{2}-2x=1\)
\(x\) \(=\dfrac{77}{15}\) \(2x=\dfrac{9}{2}-1\)
f) \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{7}\) \(2x=\dfrac{7}{2}\)
\(\left(\dfrac{27}{10}x-\dfrac{3}{2}x\right):\dfrac{2}{7}=-3\) \(x=\dfrac{7}{2}:2\)
\(\left[x\left(\dfrac{27}{10}-\dfrac{3}{2}\right)\right]=-3.\dfrac{2}{7}\) \(x=\dfrac{7}{4}\)
\(x.\dfrac{6}{5}=\dfrac{-6}{7}\)
\(x=\dfrac{-6}{7}:\dfrac{6}{5}\)
\(x=\dfrac{-5}{7}\)
bài 2:
Theo bài ra ta có :\(\dfrac{a}{27}=\dfrac{-5}{9}=\dfrac{-45}{b}\)
\(\Rightarrow9a=27.\left(-5\right)\Rightarrow a=\dfrac{27.\left(-5\right)}{9}=-15\)
\(\Rightarrow\left(-5\right)b=\left(-45\right).9\Rightarrow b=\dfrac{\left(-45\right).9}{-5}=81\)
Vậy \(a=-15;b=81\)
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
\(A=5^2-\left(2^3-x\right)+4-2x\)
\(A=25-8+x+4-2x\)
\(A=21-x\)