\(\in\)N) . Tìm chữ số tận cùng của A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Vì 51 có tận cùng là 1 nên 51n có tận cùng 1 (...1)

Xét: 471=...7   (1)

       472=...9   (2)

       473=...3   (3)

       474=...1    (1)

          ............

       47102=...9 (3)

A= 51n+47102...1 +...9=...0

Vậy số tận cùng của A là 0 nhé

17 tháng 4 2017

Ta có:51luôn có chữ số tận cùng là 1  (1)

47102=474.25+2=474.25.472

Vì 474 có chữ số tận cùng là 1 =>(474)25 có chữ số tận cùng là 1

472 có chữ số tận cùng là 9

=>474.25.472 có tận cùng là chữ số 9 hay 47102 có chữ số tận cùng là 9   (2)

Từ (1) và (2) suy ra:

A=51n+47102 có chữ số tận cùng là 0

Vậy A=51n+47102  có chữ số tận cùng là 0

1 tháng 3 2017

Ta có : 3n + 2 - 2n + 2 + 3n - 2n 

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n(32 + 1) - 2n - 1(23 + 2)

= 3n.10 - 2n - 1.10

= 10.(3n - 2n - 1)

Mà 3n - 2n - 1 thuộc Z

Nên 10.(3n - 2n - 1) chia hết cho 10

Vậy  3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

29 tháng 1 2019

\(4^{n+3}+4^{n+2}-4^n\)

\(=4^n.64+4^n.16-4^n\)

\(=4^n\left(64+16-1\right)\)

\(=4^n.81\)

Với n = 2k+1

=> 42k+1.81=(...4)

Với n = 2k

=> 16k.81=(...6)

23 tháng 2 2017

Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x

24 tháng 2 2017

2c)

Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)

\(\Rightarrow\left(x-2012\right)^2\le3\)

\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)

Vậy x=2012,y=5

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)

NV
5 tháng 4 2019

\(a^{101}+b^{101}=a^{100}+b^{100}\Leftrightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)

\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

\(a^{102}+b^{102}=a^{101}+b^{101}\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\left(2\right)\)

Trừ vế cho vế của (2) và (1):

\(\left(a-1\right)\left(a^{101}-a^{100}\right)+\left(b-1\right)\left(b^{101}-b^{100}\right)=0\)

\(\Leftrightarrow\left(a-1\right)a^{100}\left(a-1\right)+\left(b-1\right)b^{100}\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2.a^{100}+\left(b-1\right)^2b^{100}=0\)

Do \(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\\a^{100}\ge0\\\left(b-1\right)^2\ge0\\b^{100}\ge0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)^2a^{100}+\left(b-1\right)^2b^{100}\ge0\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(a;b\right)=\left(1;1\right);\left(1;0\right);\left(0;1\right);\left(0;0\right)\)

- Nếu \(\left(a;b\right)=\left(1;1\right)\Rightarrow S=1+1=2\)

- Nếu \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;0\right)\\\left(a;b\right)=\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow S+1+0=1\)

- Nếu \(\left(a;b\right)=\left(0;0\right)\) \(\Rightarrow S=0\)