\(\in\)N) . Chứng minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Ta có:

\(A=51^n+47^{102}\)

\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)

\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\overline{...9}\)

\(\Rightarrow A=\overline{...0}\)

\(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)

Vậy \(A\text{⋮}10\left(đpcm\right)\)

21 tháng 2 2021

Vì chữ số tận cùng của \(51\)là 1 nên khi nâng lên luỹ thừa n thì chữ số tận cùng ko đổi

Vì chữ số tận cùng của 47 là 7 nên khi nâng lên luỹ thừa bậc 4n+2 thì chữ số tận cùng là 9

Ta có: \(51^n+47^{102}=....1+....9=....0⋮10\)

Vậy...........

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

14 tháng 10 2015

Vì chữ số tận cùng của 51 là 1 khi nâng lên luỹ thừa n thì chữ số tận cùng không thay đổi

Vì số 47 có tận cùng là 7 khi nâng lên lũy thừa bậc 4n+2 thì chữ số tận cùng là 9.

Vậy chữ số tận cùng của A là : .....1+.....9=.......0 =>chia hết cho 10

20 tháng 8 2017

chứng minh tận cùng là 0