K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

a)Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

B1:Có 3a+2b chia hết cho 17

-> 9(3a+2b) chia hết cho 17 

->27a+18b chia hết cho 17

-> 17a+10a+17b+b chia hết 17 

mà 17a chia hết 17 và 17b chia hết cho 17

-> 10a+b chia hết cho 17

B2:có :a-5b chia hết cho 17

->10(a-5b)chia hết cho17

->10a-50b chia hết cho17

->10a+b-51b chia hết cho 17

mà 51b  chia hết cho 17

->10a+b chia hết cho 17

B3:a,có:3n+7 chia hết cho n

->3n chia hết cho n

->(3n+7)-3n chia hết cho n

->7chia hết cho n

->n thuộc Ước(7)

->n=-1;1;-7;7

b,có:27-5n chia hết cho n

->5n  chia hết cho n

->(27-5n)+5n chia hết cho n

->27 chia hết cho n

->n thuộc Ước(27)

->n=-1;1;-3;3;-9;9;-27;27

c,có:3n+1 chia hết cho 11-2n

->6n+2 chia hết cho 11-2n

->33-6n chia hết cho 11-2n

->(33-6n)+(6n+2) chia hết cho 11-2n

->35 chia hết cho 11-2n

->11-2n thuộc Ước(35)

->11-2n=-1;1;-5;5;-7;7;-35;35

->2n=12;10;16;6;18;4;46;-24

->n=6;5;8;3;9;2;23;-12

25 tháng 11 2015

bài này bạn tự nghĩ đi