Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\)
\(A=4^n+6^n+8^n+10^n-3^n-5^n-7^n-9^n\)
\(A=\left(4^n-3^n\right)+\left(6^n-5^n\right)+\left(8^n-7^n\right)+\left(10^n-9^n\right)\)
Vì \(4^n-3^n\)lẻ
\(6^n-5^n\)lẻ
\(8^n-7^n\)lẻ
\(10^n-9^n\)lẻ
\(\Rightarrow A\)chẵn ( vì lẻ + lẻ +lẻ +lẻ =chẵn ) hay \(A⋮2\)
k cho mình nha !!!!!!!!!!!!!!!
A=(4^n+6^n+8^n+10^n)-(3^n+5^n+7^n+9^n)
A=28^n-24^n
A=4^n
\(4^n\Rightarrow\)là số chẵn\(\Rightarrow\)Alaf chia hết cho 2
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
Dễ thôi sử dụng đồng dư
Ta có: \(\left(4^n+6^n+8^n+10^n\right)\equiv2^n+2^n+2^n+2^n=2^n\cdot4\)(mod 2)
Tương tự: \(\left(3^n+5^n+7^n+9^n\right)\equiv1+1+1+1=4\)( mod 2)
Suy ra: \(A=\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\equiv2^n\cdot4-4=2\left(2^{n+1}-2\right)\)(mod 2)
Vậy \(A⋮2\)
Thank