Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(2.\dfrac{a^2-b^2+4b-4}{2a-2b+4}\)
\(=\dfrac{a^2-\left(b-2\right)^2}{2\left(a-b+2\right)}\)
\(=\dfrac{\left(a-b+2\right)\left(a+b-2\right)}{2\left(a-b+2\right)}\)
\(=\dfrac{a+b-2}{2}\)
a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)
c: \(a^2+2ab+b^2-c^2\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
\(=4m\cdot\left(4m-2c\right)\)
\(=16m^2-8mc\)
a. * \(\left|x+2\right|=x+2\) nếu \(x+2\ge0\Leftrightarrow x\ge-2\)
\(\left|x+2\right|=-x-2\) nếu \(x+2< 0\Leftrightarrow x< -2\)
* TH1: \(x+2=2x-10\Leftrightarrow x-2x=-10-2\)
\(\Leftrightarrow-x=-12\Leftrightarrow x=12\left(tm\right)\)
TH2: \(-x-2=2x-10\Leftrightarrow-x-2x=-10+2\)
\(\Leftrightarrow-3x=-8\Leftrightarrow x=\frac{8}{3}\left(ktm\right)\)
Vậy, \(S=\left\{12\right\}\)
b. * \(\left|-5x\right|=-5x\) nếu \(-5x\ge0\Leftrightarrow x\le0\)
\(\left|-5x\right|=5x\) nếu \(-5x< 0\Leftrightarrow x>0\)
* TH1: \(-5x+1=3x-9\Leftrightarrow-5x-3x=-9-1\)
\(\Leftrightarrow-8x=-10\Leftrightarrow x=\frac{5}{4}\left(ktm\right)\)
TH2: \(5x+1=3x-9\Leftrightarrow5x-3x=-9-1\)
\(\Leftrightarrow2x=-10\Leftrightarrow x=-5\left(ktm\right)\)
Vậy, \(S=\left\{\varnothing\right\}\)
a: \(A=4\cdot15^2-70^2=-4000\)
b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
\(=100^2=10000\)
c: \(C=b^2-3b+a^2+3a-2ab\)
\(=\left(a-b\right)^2+3\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+3\right)\)
\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)
d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)
\(=\left(-1\right)^3-3xy+3xy\)
=-1
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
Bài 1:
a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)
b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Bài 2:
a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)
Suy ra \(16m+1⋮m-3\)
\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)
Suy ra 49 chia hết m-3....
b)tương tự
\(\cdot a-4b=5\Leftrightarrow\left(a-4b\right)^2=a^2-8ab+16b^2=25\Leftrightarrow a^2+16b^2=25+8\cdot\left(-\dfrac{3}{2}\right)=13\\ \cdot a-4b=5\Leftrightarrow4b-a=-5\)
\(a,A=ab\left(4b-a\right)=-\dfrac{3}{2}\cdot\left(-5\right)=\dfrac{15}{2}\)
\(b,B=a^2+16b^2=13\left(cm.trên\right)\)
\(c,D=a+4b\)
Ta có \(\left(a+4b\right)^2=a^2+8ab+16b^2=13+8\cdot\left(-\dfrac{3}{2}\right)=1\)
\(\Rightarrow D=a+4b=1\)