Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do \(A⋮13\Rightarrow10A⋮13\)
Mà \(39b⋮13\) nên B = \(10a+b⋮13\left(đpcm\right)\)
Tham khảo:
Câu hỏi của nguyễn thùy linh - Toán lớp 6 - Học toán với OnlineMath
nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
abcd=100.ab+cd =99ab+(ab+cd)
vì 99 chia hết cho 11=> 99ab chia hết cho 11 => nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)
Mà \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy \(\overline{abcdeg}⋮11\)
b, Ta có: 72=8.9
\(\Rightarrow10^{28}+8⋮8;9\)
Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó
\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.
\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9
\(\Rightarrow10^{28}+8⋮9\) (1)
Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)là 0, 0, 8 và tổng của 3 chữ số đó là 8.
Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)
Từ (1) và (2) suy ra \(10^{28}+8⋮72\)
\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(\overline{abcabc}=\left(100000+100\right)a+\left(10000+10\right)b+\left(1000+1\right)c\)
\(\overline{abcabc}=100100a+10010b+1001c\)
\(\overline{abcabc}=1001\left(100a+10b+c\right)\)
\(\Rightarrow\overline{abcabc}=143\left(100a+10b+c\right)⋮143\) (đpcm)
\(\Rightarrow\overline{abcabc}=13.7.11\left(100a+10b+c\right)⋮\begin{cases}11\\13\\7\end{cases}\)(đpcm)
\(\overline{ab}⋮13\Leftrightarrow10a+b⋮13\left(a,b\in N\right)\)
Theo đề ra , ta có :
\(a+4b⋮13\Rightarrow10\left(a+4b\right)⋮13\Rightarrow10a+40b⋮13\)
\(\Rightarrow10a+39b+b⋮13\)
Vì : \(39⋮13;b\in N\Rightarrow39b⋮13\)
\(\Rightarrow10a+b⋮13\) (đpcm)