\(^{43}\) - 17\(^{17}\)

chứng minh A

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Ta có: \(43^4=***1\)

=>(434)10= *****1

=>(434)10.43=******7

174=***1

=>(174)4=*****1

=>(174)4.17=*****7

=>A=********7-*****7=********0

=>A chia hết cho 10

26 tháng 11 2017

bn làm đúng rồi

28 tháng 5 2018

\(a,7^6+7^5-7^4=7^4\left(7^2+7-1\right)\\ =7^4\cdot55\\ \Rightarrow7^6+7^5-7^4⋮55\)

\(b,3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n\cdot3^2+3^n-2^n\cdot2^2-2^n\\ =3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\\ =3^n\cdot10-2^{n-1}\cdot2\cdot5\\ =10\cdot\left(3^n-2^{n-1}\right)\\ \Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

\(c,8^7-2^{18}=8^7-\left(2^3\right)^6\\ =8^7-8^6\\ =8^6\cdot\left(8-1\right)\\ =8^5\cdot8\cdot7\\ =8^5\cdot4\cdot14\\ \Rightarrow8^7-2^{18}⋮14\)

27 tháng 9 2019

Ta có 43\(^1\) = 43

43\(^2\) = \(\overline{.......9}\) (tận cùng là 9)

43\(^3\) = \(\overline{........7}\);

43\(^4\) = \(\overline{........1}\);

43\(^3\) = \(\overline{........3}\)

=>43\(^{4k}\) =\(\overline{........1}\)

43\(^{4k+1}\) = \(\overline{........3}\)

43\(^{4k+2}\)= \(\overline{.......9}\)

43\(^{4k+3}\) = \(\overline{........7}\)

Mà 43 = 4.10 + 3 => 43\(^{43}\) = 43\(^{4.10+3}\) =\(\overline{........7}\) (tận cùng là 7)

Tương tự ta có 17\(^{17}\) cũng có tận cùng là 7

⇒43\(^{43}\)- 17\(^{17}\) tận cùng là 0, chia hết cho 10

18 tháng 11 2019

cảm ơn bn.

18 tháng 3 2017

Ta có:

\(43^{43}=43^{40}.43^3=\left(43^4\right)^{10}.43^3\)

\(=\left(...1\right)^{10}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(1\right)\)

Lại có:

\(17^{17}=17^{16}.17^1=\left(17^4\right)^4.17\)

\(=\left(...1\right)^4.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow-0,7\left(43^{43}-17^{17}\right)=-0,7\left(...7-...7\right)\)

\(=-0,7.\left(...0\right)\)

Mà: \(\left\{{}\begin{matrix}-0,7\in Z\\\left(...0\right)\in Z\end{matrix}\right.\)\(\Rightarrow-0,7.\left(...0\right)\in Z\)

Vậy \(-0,7\left(43^{43}-17^{17}\right)\) là một số nguyên (Đpcm)

18 tháng 3 2017

bài này mk làm được rùi nhưng dù sao cũng cảm ơn bạn

NV
10 tháng 2 2020

\(=-\frac{7}{10}\left(43^{43}-17^{17}\right)\)

\(43^{43}=43^{4.10+1}.43^2\) có tận cùng là \(7\)

\(17^{17}=17^{4.4+1}\) có tận cùng là \(7\)

\(\Rightarrow43^{43}-17^{17}\) có tận cùng là 0

\(\Rightarrow\left(43^{43}-17^{17}\right)⋮10\Rightarrow\) số đã cho là số nguyên

12 tháng 9 2020

a ) \(-5=\frac{-5}{1}< 0\)và \(\frac{1}{63}>0\)

\(\Rightarrow-5< \frac{1}{63}\)