Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn giải:
a) A = 3x + 2 + |5x|
=> A = 3x + 2 + 5x khi x ≥ 0
A = 3x + 2 - 5x khi x < 0
Vậy A = 8x + 2 khi x ≥ 0
A = -2x + 2 khi x < 0
b) B = 4x - 2x + 12 khi x ≥ 0
B = -4x -2x + 12 khi x < 0
Vậy B = 2x + 12 khi x ≥ 0
B = -6x khi x < 0
c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên
C = x - 4 - 2x + 12 = -x + 8
Vậy với x > 5 thì C = -x + 8
d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0
D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
D = 2x - 3 khi x < -5
Hướng dẫn giải:
a) A = 3x + 2 + |5x|
=> A = 3x + 2 + 5x khi x ≥ 0
A = 3x + 2 - 5x khi x < 0
Vậy A = 8x + 2 khi x ≥ 0
A = -2x + 2 khi x < 0
b) B = 4x - 2x + 12 khi x ≥ 0
B = -4x -2x + 12 khi x < 0
Vậy B = 2x + 12 khi x ≥ 0
B = -6x khi x < 0
c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên
C = x - 4 - 2x + 12 = -x + 8
Vậy với x > 5 thì C = -x + 8
d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0
D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
D = 2x - 3 khi x < -5
a: Khi x>4 thì A+3x-5-x+4=2x-1
b: A=2016
=>3x-5-|x-4|=2016(1)
Trường hợp x>=4
=>2x-1=2016
hay x=2017/2(nhận)
Trường hợp 2: x<4
=>3x-5-(4-x)=2016
=>3x-5-4+x=2016
=>4x-9=2016
hay x=2025/4(loại)
a. Khi x > 4
\(A=3x-5-x-4\)
\(=2x-9\)
b. Ta có A = 2016
\(\Rightarrow3x-5-\left|x-4\right|=2016\)
\(\Leftrightarrow-\left|x-4\right|=2016-3x+5\)
\(\Leftrightarrow\left|x-4\right|=3x-2021\)
TH1: \(\left|x-4\right|\ge0\) khi \(x\ge4\)
\(x-4=3x-2021\)
\(\Leftrightarrow-2x=-2017\Leftrightarrow x=\dfrac{2017}{2}\left(tmđk\right)\)
TH2 : \(\left|x-4\right|< 0\) khi \(x< 4\)
\(x-4=2021-3x\)
\(\Leftrightarrow4x=2025\Leftrightarrow x=\dfrac{2025}{4}\left(ktmđk\right)\)
Vậy : Phương trình có tập nghiệm \(S=\left\{\dfrac{2017}{2}\right\}\)