Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
=3^n.9+3^n.3+2^n.8+2^n.4
=3^n[9+3]+2^n[8+4]
=3^n.12+2^n.12chia hết cho 6[vị 12 chia hết cho 6]
b,=12^8.9^12
=2^16.3^8.3^24
=2+16.3^32
18^16=2^16.3^32
suy ra bằng nhau
\(12^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}==2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
\(A=1+3+3^2+3^3+...+3^{3n}+3^{3n+1}+3^{3n+2}\)
\(A=1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)+...+3^{3n}.\left(1+3+9\right)\)
\(A=1.13+3^3.13+3^6.13+....+3^n.13\)
\(A=13.\left(1+3^3+3^6+...+3^{3n}\right)\)⋮ \(13\)
Vậy \(A\) ⋮ \(13\) ∀ \(n\)
Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
=\(3^n.10-2^{n-1}.2.5\)
=\(3^n.10-2^{n-1}.10\)
=\(\left(3^n-2^{n-1}\right).10⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Nhớ tick cho mình nha!
1) = 3n(32+1) - 2n(22+1)
2)A=m.n.p
\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)
3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)
mà ab=c2
suy ra đpcm
1. Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}=\frac{2a+3b-5c}{4+9-25}=\frac{-28}{-12}=\frac{7}{3}\)
\(\Rightarrow\frac{2a}{4}=\frac{7}{3}\Rightarrow2a=\frac{7}{3}.4=\frac{28}{3}\Rightarrow a=\frac{28}{3}:2=\frac{14}{3}\)
\(\Rightarrow\frac{3b}{9}=\frac{7}{3}\Rightarrow3b=\frac{7}{3}.9=21\Rightarrow b=21:3=7\)
\(\Rightarrow\frac{5c}{25}=\frac{7}{3}\Rightarrow5c=\frac{7}{3}.25=\frac{175}{3}\Rightarrow c=\frac{175}{3}:5=\frac{35}{3}\)
Vậy a = .......
b = ..........
c = ..............
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)
\(\Rightarrow\frac{2a}{4}=4\Rightarrow2a=4.4=16\Rightarrow a=16:2=8\)
\(\Rightarrow\frac{3b}{9}=4\Rightarrow3b=4.9=36\Rightarrow b=36:3=12\)
\(\Rightarrow\frac{5c}{20}=4\Rightarrow5c=4.20=80\Rightarrow c=80:5=16\)
Vậy a = 8
b = 12
c = 16
\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(A=3^n.3^3+2^n.2^3+3^n.3+2^n2^2\)
\(A=3^n.27+2^n.8+3^n.3+2^n.4\)
\(A=3^n.30+2^n.12\)
\(A=6\left(3^n.5+2^n.2\right)\)chia hết cho 6