\(3^2+3^3+3^4+...+3^{38}+3^{39}+3^{100}\)Chung to rang A chia het chi 120

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

hình như bạn viết sai đề rồi đó

1 tháng 4 2016

Viết sai đề rồi Ngọc Hà ơiiiiiii

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).

8 tháng 7 2015

giải như tiểu thiên thiên cũng giải

1 tháng 11 2021

Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260

= (2 + 22) + (23 + 24) + .. + (259 + 260)

= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1) 

= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259\(⋮\)3

1 tháng 11 2021

giup minh voi

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

27 tháng 6 2017

\(B=4+4^2+4^3+.....+4^{2016}\)

\(4B=4\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(4B=4^2+4^3+4^4+.....+4^{2017}\)

\(4B-B=\left(4^2+4^3+4^4+......+4^{2017}\right)-\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(3B=4^{2017}-4\)

\(B=\dfrac{4^{2017}-4}{3}\)

8 tháng 9 2017

= 3( 1  + 3 + 33) + 35(1 + 3 + 33) + ............+31989(1 + 3 + 33

= 13( 3 + 35 +........+ 31989) nên chia hết 13

26 tháng 10 2017

B = 2+22+23+....+259+260

B = (2+22+23+24) +....+ (257+258+559+560)

B = 2(1+2+22+23)+...+ 257(1+2+22+23)

B = 2x15 +....+ 257x15

B = 15( 2+....+257) =>chia hết cho 5 vì 15 chia hết cho 5

26 tháng 10 2017

a) B=2+22 + 23 + ...+ 259 + 260

B= (2+22) + (23+24) + .... + ( 259+ 260)

B= 2(1+2) + 23(1+2) + ... +259(1+2)

B= 2x3 + 23x3 + ... + 259x3

B= 3(2+23+......+259) => chia hết cho 3