K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

 Ta có: A =3+32+33+...+340

                  = (31+32)+(33+34)+....+(339+340)
                  = 3.(1+3) + 33.(1+3)+.....+339.(1+3)

                  = 3.4+33.4+....+339.4

                  = 4.(3+33+....+339) chia hết cho 4

    Ta lại có: A = (31+32+33+34)+....+(337+338+339+340)

                       = 3.(1+3+3+3)+.....+337.(1+3+3+3)

                        = 3.10 +.....+337.10

                         = 10.(3+...+337)  chia hết cho 10

Vậy A chia hết cho 3 và 10

23 tháng 10 2017

b) A=_____________________

    A.3^1=3^41- 3^2

     3A-A=3^41- 3^2

    2A=___________

     A=(3^41-3^2):2

12 tháng 11 2017

Bài 1:Ta có:315+314=314.3+314=314.4 chia hết cho 4

Bài 2:a,\(3A=3+3^2+3^3+...........+3^{2016}\)

\(\Rightarrow3A-A=\left(3+3^2+.......+3^{2016}\right)-\left(1+3+.......+3^{2015}\right)\)

\(\Rightarrow2A=3^{2016}-1\Rightarrow A=\frac{3^{2016}-1}{2}\)

b,Ta có:A=1+3+32+33+.............+32015

=(1+3)+(32+33)+...............+(32014+32015)

=4+32.4+................+32014.4

=4.(1+32+.........+32014) chia hết cho 4

12 tháng 11 2017
giúp mình nhé. câu trả lời đúng nhất sẽ đc k mình sẽ k cho ng nhanh nhất ,thời gian sẽ là lúc 8:30
6 tháng 10 2018

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.

12 tháng 12 2017

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3 

12 tháng 12 2017

thế rút gọn thì sao

27 tháng 12 2020

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> A = (3121 - 3):2

d,

 Ta có : 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3 

 

 

 

Mình nghĩ thế

25 tháng 5 2015

Ta có: 
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100 
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99 
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100 
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99 

=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1... 
<=>16A=3-101/3^99-100/3^100 
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16 
Suy ra A<3/16

13 tháng 2 2016

rắc rối quá bạn ạ

21 tháng 12 2017

A = 31 + 32 +33 + 34 +.....+32015+ 32016

A = (31 + 32) +(33 + 34) +.....+ (32015+ 32016)

A = 3(1+3) + 32(1+3) + .....+ 32015(1+3)

A = 3.4 +32.4 +....... + 32015.4

A = 4(3 +32 +....+ 32015) chia hết cho 4

===================================================

A =31 + 32 +33 + 34 + 35 +36 +.....+32014 + 32015+ 32016

A = (31 + 32 +33 ) +(34 + 35 +36) +.....+ (32014 + 32015+ 32016)

A = 3(1+3+32) + 34(1+3+32) + .....+ 32014(1+3+32)

A = 3.13 +34.13 +....... + 32014.13

A = 13.(3 +34 +....+ 32014) chia hết cho 13

5 tháng 10 2018

Các bài trên gần giống nhau nên mình làm một bài thôi nhé!

a) \(B=1+7^1+7^2+...+7^{119}\)

\(2B=7^1+7^2+7^3+...+7^{120}\)

\(\Rightarrow2B-B=B=7^{120}-1\) 

Ta có:\(B=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{118}+7^{119}\right)\)

\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{118}\left(1+7\right)\)

\(=8\left(1+7^2+...+7^{118}\right)⋮8^{\left(đpcm\right)}\)

5 tháng 10 2018

\(B=1+7^1+7^2+7^3+.......+7^{119}\)

\(\Rightarrow7B=7+7^2+7^3+7^4+.....+7^{120}\)

\(\Rightarrow7B-B=\left(7+7^2+7^3+7^4+......+7^{120}\right)-\left(1+7^1+7^2+7^3+.......+7^{119}\right)\)

\(\Rightarrow6B=7^{120}-1\)

\(\Rightarrow B=\frac{7^{120}-1}{6}\)

B chia hết cho 8:

\(B=\left(1+7^1\right)+\left(7^2+7^3\right)+........+\left(7^{118}+7^{119}\right)\)

\(\Rightarrow B=\left(1+7^1\right)+7^2\left(1+7^1\right)+.......+7^{118}\left(1+7^1\right)\)

\(\Rightarrow B=8+7^2.8+........+7^{118}.8\)

\(\Rightarrow B=8\left(1+7^2+.......+7^{118}\right)⋮8\left(đpcm\right)\)

Các phần sau bạn làm tương tự

Chú ý: Khi muốn chứng minh chia hết bạn phải nhóm các số hạng sao cho mỗi cặp chia hết với số cho trước