K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

a ) A = 3 + 32 + 33 + .... + 32012

Nhan của 2 vế của A với 3 ta được :

3A = 3(3 + 32 + 33 + .... + 32012)

= 32 + 33 + 34 + .... + 32013

Trừ cả hai vế của 3A cho A ta được :

3A - A = (32 + 33 + 34 + .... + 32013) - (3 + 32 + 33 + .... + 32012)

2A = 32013 - 3

=> A = (32013 - 3) : 2

b ) Theo a ) ta có :

2A = 32013 - 3 => 2A + 3 = 32013

Mà theo đề bài : 2A + 3 = 3x

=> 32013 = 3x => x = 2013

Vậy x = 2013

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

25 tháng 6 2015

3A=3^2+3^3+...+3^2007

=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)

=>2A=3^2007-3^1=3^2007-3

=>2A+3=3^2007-3+3=3^2007=3^x

=>x=2007

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

5 tháng 3 2020

\(A=3+3^2+3^3+...+3^{2006}\)

\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)

\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)

\(\Leftrightarrow2A=3^{2007}-3\)

\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)

Ta có \(2A=3^{2007}-3\)

=> 2A+3=\(3^{2007}-3+3=3^{2007}\)

=> x=2007

5 tháng 3 2020

A=3^1+3^2+3^3+....+3^2006

3A=3^2+3^3+...+3^2007

=>2A=3^2007-3

=>2A+3=3^x

3^2007-3+3=3^x

3^2007=3^x

=>x=2007

Vậy x=2007

3 tháng 4 2016

1/2 lớn hơn

25 tháng 7 2021

A=3+32+33+...+32019

3A=32+33+...+32020

3A-A=(32+33+...+32020)-(3+32+33+...+32019)

2A=32020-3

2A+3=32020

⇒n=2020