Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
a, Các số tự nhiên có tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
=> Các số chính phương sẽ có tận cùng là: 0, 1, 4, 9, 6, 5
=> Các số chính phương k thể có tận cùng là 2, 3, 7, 9
b,
3. 5. 7. 9. 11+ 3= (...5)+ (...3)
= (....8)
3.5.7.9.11+3 có tận cùng là 8 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 3.5.7.9.11+3 k pải là số chính phương
2.3.4.5.6 -3= (....0)- (....3)
= (....7)
2.3.4.5.6 -3 có tận cùng là 7 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 2.3 .4 .5 .6 -3 k pải là số chính phương.
2.
a, 2n= 16 b, 4n= 64 c, 15n= 225
Mà 16= 24 Mà 64= 43 Mà 225= 152
=> 2n= 24 => 4n= 43 => 15n= 152
=> n=4 => n= 3 => n=2
3,
x50= x
=> x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708