Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn alibaba nguyễn sai rồi nên mình sửa lại rồi bạn xem nhé :
Lời giải :
Ta có : \(331\equiv1\left(mod15\right)\)
\(\Rightarrow331^{332}\equiv1^{332}\equiv1\left(mod15\right)\left(1\right)\)
Ta có : \(2^4\equiv1\left(mod15\right)\)
\(\Rightarrow2^{333}=\left(2^4\right)^{83}.2\equiv2\left(mod15\right)\)
\(\Rightarrow332^{333}\equiv2^{333}\equiv2\left(mod15\right)\left(2\right)\)
Ta có : \(3^5\equiv3\left(mod15\right)\)
\(\Rightarrow3^{334}=3^{5.66}.3^4\equiv3^{66}.3^4\equiv3^{70}\equiv\left(3^5\right)^{14}\equiv3^{14}\equiv\left(3^5\right)^2.3^4\equiv3^2.3^4\equiv3^6\equiv9\left(mod15\right)\)
\(\Rightarrow333^{334}\equiv3^{334}\equiv9\left(mod15\right)\left(3\right)\)
Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra : \(A\equiv\left(1+2+9\right)\equiv12\left(mod15\right)\)
Vậy A chia cho 15 dư 12
A = (tự chép lại đề)
\(\Leftrightarrow A=\left(330+1\right)^{332}+\left(333-1\right)^{333}+\left(332+1\right)^{334}\)
\(\Leftrightarrow A=\left(330+1+333-1+332+1\right)+\left(x\right)^{332+333+334}\)
\(\Rightarrow A=996\)
\(\Rightarrow A\)chia 15 dư : \(996:15=66\) dư 6
=> A chia 15 dư 6
A=(300 +1)^332 + (333-1)^333 +3^334.11^334
A=331^332-1^332 + 332^333 +1^333 +333^334
A=330(330^331 +330^330+...+1) +333(333^332 -333^331 +...-1) +333^334 chia het cho 3
A=331^332-1^332 +332^333 -2^333 + 333^334 +2^334 +2^333 -2.2^333 +1
A=330(330^331+...+1)+ 330(332^331 +...+2^331) +335 (333^333 -335^332.2+......-2^333) -2.(1+2^332) +3
A=..... -2(5(4^167 -4^156 +....-1)) +3
=> A chia 5 du 3
1 ) Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(2^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì : \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\)
2 ) Ta có : \(\left(222^3\right)^{111}=\left(2.111\right)^3=8.111^3\)
\(3^{222}=\left(333^2\right)^{111}=\left(3.111\right)^2=9.111^2\)
Vì : \(8.111^2< 9.111^2\)
\(\Leftrightarrow2^{333}< 3^{222}\)
1. Ta có:
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) nên \(2^{332}< 8^{111}< 9^{111}< 3^{223}\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
2. Ta có:
\(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) nên \(2^{333}< 3^{222}\)
Vậy \(2^{333}< 3^{222}\)
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.