K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

Số 3 lũy thừa bao nhiêu cũng là số lẻ

11 lũy thừa bao nhiêu cũng lẻ nốt

Hay số lẻ cộng hay trừ nhau sẽ chẵn tức là chia hết cho 2.

21 tháng 11 2016

32013=(34)503* 3 = 81503 . 3 = .....1 * ......3 = ........3

11671=.....1 

Mà .......3 - .......1 = .......2 chia hết cho 2

=>32013 - 11671 chia hết cho 2

26 tháng 11 2015

Ta có: 32013=3.3.3.3.3......3

=> Ta có: 32013= (3.3).(3.3).(3.3)...............(3.3).3

=> 32013= (9.9).(9.9).........(9.9).3

=> 32013= ...1....1....1............1.3

=> 32013= .....3                     (....3 có nghĩa là tận cùng bằng 3 nha bạn)

Vì các số có tận cùng = 1 thì nhân cho chính nó bao nhiêu lần cũng bằng 1

=> 11671=......1

Mà .....3-.....1=.......2

Số có tận cùng bằng 2 thì chia hết cho 2

=> A chia hết cho 2 ĐPCM

26 tháng 11 2015

 

32013 là số lẻ  

11671  là số lẻ

=> A = lẻ  - lẻ = chẵn

=> A chia hết cho 2

4 tháng 11 2016

câu 1 : \(147.13-48.13+13\)

           \(=13.\left(147-48+1\right)\)

           \(=13.100\)

           \(=1300\)

4 tháng 11 2016

câu 1:

147 . 13 - 48 . 13 + 13 = 147 . 13 - 48 . 13 + 13 . 1

= 13(147 - 48 + 1)

= 13 . 100

= 1300

2 câu còn lại quên cách giải

25 tháng 11 2015

32013=(34)503.3=(........1).3=.........3

11671=(114)668.113=(.........1).1331=.........1

Ta có:

A=(........3)-(..........1)=........2

chữ số tận cùng của A là số chẵn 

=>A chia hết cho 2

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)