Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32013=(34)503* 3 = 81503 . 3 = .....1 * ......3 = ........3
11671=.....1
Mà .......3 - .......1 = .......2 chia hết cho 2
=>32013 - 11671 chia hết cho 2
Ta có: 32013=3.3.3.3.3......3
=> Ta có: 32013= (3.3).(3.3).(3.3)...............(3.3).3
=> 32013= (9.9).(9.9).........(9.9).3
=> 32013= ...1....1....1............1.3
=> 32013= .....3 (....3 có nghĩa là tận cùng bằng 3 nha bạn)
Vì các số có tận cùng = 1 thì nhân cho chính nó bao nhiêu lần cũng bằng 1
=> 11671=......1
Mà .....3-.....1=.......2
Số có tận cùng bằng 2 thì chia hết cho 2
=> A chia hết cho 2 ĐPCM
32013 là số lẻ
11671 là số lẻ
=> A = lẻ - lẻ = chẵn
=> A chia hết cho 2
câu 1 : \(147.13-48.13+13\)
\(=13.\left(147-48+1\right)\)
\(=13.100\)
\(=1300\)
32013=(34)503.3=(........1).3=.........3
11671=(114)668.113=(.........1).1331=.........1
Ta có:
A=(........3)-(..........1)=........2
chữ số tận cùng của A là số chẵn
=>A chia hết cho 2
bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
Số 3 lũy thừa bao nhiêu cũng là số lẻ
11 lũy thừa bao nhiêu cũng lẻ nốt
Hay số lẻ cộng hay trừ nhau sẽ chẵn tức là chia hết cho 2.