Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+3^4+....+3^{2015}\)
\(=>3A=3^2+3^3+3^4+3^5+....+3^{2016}\)
\(3A-A=3^2+3^3+3^4+....+3^{2016}-3-3^2-3^3-....-3^{2015}\)
\(2A=3^{2016}-3\)
Mà \(2A+3=3^n\)
=> \(3^{2016}-3+3=3^n\)
\(=>3^{2016}=3^n\)
=> n = 2016 ( thỏa mãn yêu cầu đề bài )
Ta có: A = 3 + 32 + 33 + ... + 32015
\(\Rightarrow\) 3A = 32 + 33 + 34 + ... + 32016
\(\Rightarrow\) 3A \(-A\) = (32 + 33 + 34 + ... + 32016) \(-\) (3 + 32 + 33 + ... + 32015)
\(\Rightarrow\) 2A = 32016 \(-\) 3
Mà 2A + 3 = 3n
\(\Rightarrow\) 32016 \(-\) 3 + 3 = 3n
\(\Rightarrow\) 3n = 32016
=> n = 2016.
Ta có :
A=3+32+...+32015
=> 3A-A=32+33+...+32016- (3+32+...+32015)
=>2A=32016-3
lại có: 2A+3=3n
=>32016-3+3=3n
=>32016=3n
=>n=2016
Vậy n=2016
=>3A=32+33+…+32010
=>3A-A=32+33+…+32010-3-32-…-32009
=>2A=32010-3
=>2A+3=32010=3N
=>N=2010
A = 3+32+33+......+32009
3A = 32+33+34+......+32010
2A = 3A - A = 32010-3
=> 2A + 3 = 32010
Mà 2A + 3 = 3n
=> n = 2010
3A=3^2+3^3+3^4+...+3^2010
2A=3^2010-3
2A+3=3^2010-3+3=3^n
3^2010=3^n
n=2010
A=3+3^2+3^3+...+3^2009
=>3A=3^2+3^3+3^4+...+3^2010
=>3A-A=3^2010-3
=>2A=3^2010-3
=>2A+3=3^2010
=>n=2010
Ta có : 3A = 32 + 33 + 34 + 35 + .... + 32010
=> 3A - A = 32010 - 3
=> 2A = 32010 - 3
Ta có : 2A + 3 = 3n
=> 32010 - 3 + 3 = 3n
=> 32010 = 3n
=> n = 2010
vậy n = 2010
Ta có : \(A=3+3^2+3^3+...+3^{2009}\)
=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)
=> \(2A=3^{2010}-3\)
=> \(2A+3=3^{2010}-3+3\)
=> \(2A+3=3^n=3^{2010}\)
=> \(n=2010\)
ai tích mình lên 10 cái mình tích người đó cả tháng
Đề : Cho A= 1+3+32+33+34+...+32000. Biết 2A=3n-1
Tìm n
A = 31+32 + 33+...32015
\(\Rightarrow\)3A= 32 + 33+...+32016
\(\Rightarrow\)2A = 3A -A = 32016 -3
\(\Rightarrow\)2A +3 = 32016
vậy n = 2016
Ta có :
A= 31+32+33+34+....+32015
=>3A= 32+33+34+35+....+32016
=>3A- A=(32+33+34+35+....+32016) - (31+32+33+34+....+32015)
=>2A=32016-3
=>2A +3 =32016
Vậy n = 2016