K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng

=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)

=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)

=> B = 1 + 40.(3+35+...+397)

Có 1 chia 40 dư 1

40.(3+35+...+397)

 chia hết cho 40

=> 1 + 40.(3+35+...+397) chia 40 dư 1

=> B chia 40 dư 1

8 tháng 12 2015

A = 4 + 42 + 43 + ... + 424

= (4 + 42) + (43 + 44) + ... + (423 + 424)

= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)

= 4 . 5 + 43 . 5 + ... + 423 . 5

= 20 + 20 . 42 + ... + 20 . 422

= 20 (1 + 42 + ... + 422) chia hết cho 20

ĐPCM

 

 

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

25 tháng 11 2016

Ta có: M=1+3+3^2+...+3^13

=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^11+3^12+3^13)

=13+3^3.(1+3+3^2)+..+3^11.(1+3+3^2)

=13+3^3.13+...+3^11.13

=13.(1+3^3+..+3^11)  ( chia het cho 13)

Vay M chia het cho 13

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

21 tháng 12 2016

A=3+32+33+...+39+310

A=(3+32)+(33+34)+...+(39+310)

A=3.(1+3)+33.(1+3)+...+39.(1+3)

A=3.4+33.4+...+39.4

A=4.(3+33+...+39)

Vì 4 chia hết cho 4 nên 4.(3+33+...+39) chia hết cho 4

CHÚC BẠN HỌC GIỎI !