K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(A=3+3^2+...+3^{2008}\)

\(3A=3.\left(3+3^2+...+3^{2008}\right)\)

\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)

\(2A=3^{2009}-3\)

\(2A+3=3^{2009}-3+3\)

\(2A+3=3^{2009}\)

Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)

 \(\Rightarrow x=2009\)

3 tháng 11 2017

Thank you to kick me ooooooooooooooooooo 

13 tháng 3 2016

Bạn ơi, A + 3 + ... hay là A = 3 + 32+... hả bạn?

20 tháng 10 2019

Ta có: \(A=3+3^2+3^3+...+3^{2008}\)

\(3A=3^2+3^3+3^4+...+3^{2009}\)

\(3A-A=3^{2009}-3\)

Hay \(2A=3^{2009}-3\)

\(\Rightarrow2A+3=3^x\)

\(\Rightarrow\left(3^{2009}-3\right)+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

Hok tốt nha^^

Có A=3+32+...+32008

=>3A=32+33+...+32009

=>3A-A=2A=32009-3

Thay 2A vào 2A+3=3x

Ta được: 32009-3+3=3x

=>32009=3x

=>x=2009

Vậy..

5 tháng 7 2015

 

 

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=\left(3^2+3^3+3^4+..+3^{2010}\right)-\left(3+3^2+3^3+....+3^{2009}\right)\)

\(2A=3^{2010}-3\)(1)

 

(1) => \(3^{2010}-3+3=3^{2010}\)

=> n = 2010

 

23 tháng 9 2017

A = 3 + 32 + 33 + ... + 32009

3A = 32 + 33 + 34 + ... + 32010

3A - A = (32 + 33 + 34 + ... + 32010) -  (3 + 32 + 33 + ... + 32009)

2A = 32010 - 3

3n = 2A + 3

3n = 22010 - 3 + 3

3n = 32010

n = 2010

9 tháng 11 2017

Ta có :\(A=3+3^2+3^3+...+3^{2008}\)(1)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)(2)

Lấy (2) trừ đi 1 ta có :

\(\Rightarrow2A=3^{2009}-3\)

Ta lại có :

\(2A+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

9 tháng 11 2016

a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)

<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)

<=> x = 2010

14 tháng 4 2017

=> x-1 +x-2+X-3 = 4(x-4) => 3x-6 = 4x -16 nhé bạn

9 tháng 11 2017


A = 3 + 32 + 33 + ... + 32008
3A = 32 + 33 + 34 + ... + 32009
3A - A = ( 32 + 33 + 34 + ... + 32009) - ( 3 + 32 + 33 + ... + 32008)
2A = 32009 - 3
A = \(\frac{3^{2009}-3}{2}\)
\(2A+3=3^x\)
\(\Rightarrow\)\(\frac{3^{2009}-3}{2}\times2+3=3^x\)
\(\Rightarrow3^{2009}-3+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)

9 tháng 11 2017

Ta có:3A=32+33+.................+32009

\(\Rightarrow\)3A-A=(32+33+...............+32009)-(3+32+33+................+32008)

\(\Rightarrow2A=3^{2009}-3\)

\(\Rightarrow2A+3=3^{2009}\Rightarrowđpcm\)

9 tháng 11 2017

Ta có: \(A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)

Trừ \(3A-A=3^2+3^3+3^4+...+3^{2009}-3-3^2-3^3-...-3^{2008}\)

\(\Rightarrow2A=3^{2009}-3\)

\(2A=3^x-3\)

\(\Rightarrow3^x=3^{2009}\)

\(\Rightarrow x=2009.\)

Vậy x = 2009.

10 tháng 11 2017

\(a=3+3^2+3^3+...+3^{2008}\)

\(3a=3^2+3^3+3^4+...+3^{2009}\)

\(3a-a=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)

\(2a=3^{2009}-3\)

\(2a+3=3^{2009}=3^x\)

\(x=2009\)

\(A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A=3\cdot\left(3+3^2+3^3+...+3^{2008}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)

\(\Rightarrow2A=3^{2009}-3\)

Ta có: \(2A+3=3^x\)

\(\Rightarrow3^{2009}-3+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

17 tháng 11 2019

Trả lời :

Nhân hai vế với 3 , ta được :

  \(3A=3^2+3^3+3^4+...+3^{2009}\)    ( 2 )

-   \(A=3+3^2+3^3+...+3^{2008}\)      ( 1 )

__________________________________________

\(2A=3^{2009}-3\)

Từ ( 1 ) và ( 2 ), ta có :

\(2A=3^{2009}-3\Leftrightarrow2A+3=3^{2009}\Rightarrow3^x=3^{2009}\Rightarrow x=2009\)

     - Study well -