K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)

Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất

\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0

Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow2x\in\left\{4;8\right\}\)

\(\Rightarrow x\in\left\{2;4\right\}\)

Mà x nhỏ nhất và x > 0 nên x = 2

Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)

Vậy MaxA = 6 tại x = 2.

17 tháng 6 2023

a, A = \(\dfrac{12x-2}{4x+1}\) 

2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2

Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2

A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\) 

b, A = 1  \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1 

                   12\(x\) - 2 = 4\(x\) + 1

                   12\(x\) - 4\(x\) = 1 + 2

                       8\(x\) = 3

                         \(x\) = \(\dfrac{3}{8}\)

c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1  

                  12\(x\) + 3 - 5 ⋮ 4\(x\) + 1

                   3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1

                                     5 ⋮ 4\(x\) + 1

           Ư(5) ={-5; -1; 1; 5}

Lập bảng ta có: 

\(4x+1\) -5 -1 1 5
\(x\) -3/2 -1/2 0 1

Vậy \(x\) \(\in\) {0; 1}

 

17 tháng 6 2023

ghi rõ lại đề đi bạn ơi

25 tháng 5 2017

      \(P=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=2+\frac{5}{x-1}\)

    P nguyên => \(\frac{5}{x-1}\)nguyên => \(x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Thay x - 1 lần lượt bằng các giá trị trên rồi tính ra x.

6 tháng 11 2016

a) |2x-2|=|2x+3|

TH1: 2x-2=2x+3

=> 2x-2=2x-2+5 ( vô lý )

=> Không tồn tại x

TH2: 2x-2=-2x-3

=> 2x+2x+3=2

=> 4x=-1

=> x=-1/4

Vậy: x=-1/4

b) \(A=\frac{1}{\sqrt{x-2}+3}\)

Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất

Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)

Dấu = xảy ra khi x=2

Vậy: \(Max_A=\frac{1}{3}\) tại x=2

c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)

\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)

\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)

\(\Rightarrow\frac{5}{x-2}< 0\)

\(\Rightarrow x< 2\)

5 tháng 11 2016

a)

|2x-2| = |2x+3|

<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)

<=> x = \(-\frac{1}{4}\)

20 tháng 3 2020

Ta có: \(x^2-2xy+2y^2+2x-4y+22\)

=  \(x^2-2xy+y^2+2x-2y+1+y^2-2y+1+20\)

\(\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+20\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+20\ge20\)

=> \(A\le\frac{2000}{20}=100\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

=> GTLN của A = 100 khi  x= 0 và y =1