Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)\(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
Vậy chữ số tận cùng của A là chữ số 0
\(2,\)\(\frac{x+3}{x-2}\)
\(=\frac{x-2+5}{x-2}\)
\(=\frac{x-2}{x-2}+\frac{5}{x-2}\)
\(=1+\frac{5}{x-2}\)
\(\Rightarrow\)Để \(1+\frac{5}{x-2}\in Z\Rightarrow\frac{5}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
Chia ra 4 trường hợp rồi tự tìm ra x nha
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
a) \(n\inℕ\left(n\ne-4\right)\)
b) Để M nguyên
\(\Rightarrow\frac{5}{n+4}\)Cũng nguyên
\(\Leftrightarrow5⋮n+4\)
\(\Leftrightarrow n+4\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{1;5\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}n+4=1\\n+4=5\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=1\end{cases}}}\)
Mình làm ko chắc nha ,sai thì thông cảm
a) Ta có : \(\frac{2n-3}{n-1}=\frac{2n-2-1}{n-1}=\frac{2.\left(n-1\right)-1}{n-1}=2-\frac{1}{n-1}\)
Lập bảng ta có :
n-1 | 1 | -1 |
n | 2 | 0 |
b) Ta có : \(\frac{3n+1}{n-2}=\frac{3n-6+7}{n-2}=\frac{3.\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)
Lập bảng ta có :
n-2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
\(A=\frac{n+6}{n-1}=\frac{n-1+7}{n-1}=1+\frac{7}{n-1}\inℤ\Leftrightarrow\frac{7}{n-1}\inℤ\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0