K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

a) để \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\ge-4\\m+3\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{-3}{2}\\m\le2\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}\le m\le2\)

b) để \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-4\\m+3\ge5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{-3}{2}\\m\ge2\end{matrix}\right.\Rightarrow m\in\varnothing\)

c) để \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+3< 4\\5< 2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< 1\\m>3\end{matrix}\right.\)

\(\Rightarrow m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\)

19 tháng 9 2020

cho mình hỏi câu c.

tại sao m+3< 4 mà ko phải m+3<-4

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

NV
19 tháng 9 2019

Để \(A\subset B\Rightarrow\left\{{}\begin{matrix}2m-1\ge-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Để \(A\cap B=\varnothing\) \(\Rightarrow\left[{}\begin{matrix}2m+3\le-1\\2m-1\ge1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge1\end{matrix}\right.\)

5 tháng 9 2021

b)

=>\(\left\{{}\begin{matrix}m-1>2\\m+3\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>3\\m\le2\end{matrix}\right.\)(vô lý)

vậy ko tồn tại m

5 tháng 9 2021

a)\(\left\{{}\begin{matrix}2>m-1\\5< m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\Leftrightarrow2< m< 3\)

a: \(A\cap B=\left(-3;1\right)\)

\(A\cup B\)=[-5;4]

A\B=[1;4]

\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)

b: C={1;-1;5;-5}

\(B\cap C=\left\{-5;-1\right\}\)

Các tập con là ∅; {-5}; {-1}; {-5;-1}

1: A=[-3;6)

C={1;3}

2: B\(\cap\)C={1}

A\B=[-3;-1)