Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2B=2^2+2^3+2^4+...+2^2017
2B-B=(2^2+2^3+2^4+...+2^2017)-(2+2^2+2^3+...+2^2016)
B=2^2017-2
Nhớ k mình nha mọi người!
B=2+2^2+2^3+.....+2^2016
=> 2B = 2^2+2^3+.....+2^2017
=> 2B - B = B = ( 2^2+2^3+.....+2^2017 ) - ( 2+2^2+2^3+.....+2^2016 )
=> B = 2^2017 - 2
tự tim ha
a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017
=> 2A-A= 2^2017-1
=> A= 2^2017-1/2
1.
Số số hạng là :
( 296 - 2 ) : 3 + 1 = 99 ( số )
Tổng là :
( 296 + 2 ) . 99 : 2 = 14751
2.
Bạn tham khảo một vài tính chất về cs tận cùng nhé
Tính chất 1: a) Các số có tận cùng là 0,1,5,6 khi nâng lên luỹ thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi
b) Các số có tận cùng là 4,9 khi nâng lên luỹ thừa bậc lẻ thì chữ số tận cùng không đổi
c) Các số tận cùng là 3,7,9 khi nâng lên luỹ thừa bậc 4n(n thuộc N) thì chữ số tận cùng là 1.
d) Các số tận cùng là 2,4,8 khi nâng lên luỹ thừa bậc 4n(n thuộc N) thì chữ số tận cùng là 6.
e) Tích của một số tự nhiên có chữ số tận cùng là 5 với bất kì số tự nhiên lẻ nào cũng cho ta số có chữ số tận cùng là 5.
Tính chất 2: Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Tính chất 3: a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3.
b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2.
c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng.
chữ số tận cùng của 77 là số 7
đơn giản thế bạn
Cho A làm j cho mệt
1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)
Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25
Xét n có dạng 2k+1
\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)
Vì \(25^k\) có 2 chữ số tận cùng là 25
\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125
\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25
Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)
Theo đề
=> \(2A=2+2^2+2^3+2^4+2^5+...+2^{2017}\)
=> \(2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
=> \(A=2^{2017}-1=2^{2016}.2-1=\left(2^4\right)^{504}.2-1=16^{504}.2-1\)
\(=\left(...6\right).2-1=\left(...2\right)-1=\left(...1\right)\)
Vậy chữ số tận cùng của A là 1.
A = 1 + 2 + 22 + ........ + 22016
2A = 2 + 22 + ........ + 22017
2A - A = 22017 - 1
A = 22017 - 1
Ta có: 22017 - 1 = 24.504.2 - 1 = (......6) . 2 - 1 = (.....2) - 1 =(....1)
Vậy chữ số tận cùng của A là 1