Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5n+2 : 3
Suy ra 5n : 3 dư 1
252 chia 3 cũng dư 1 ( 1 số chia 3 dư 1 hay 2 thì nâng lên lũy thừa bậc 2 chia 3 sẽ dư 1)
252=3k+1
5n=3k+1
252+5n=3k+1+3k+1=6k+2
Có 6k+2 chia hết cho 3, nhưng 2 ko chia hết cho 3 nên.....
Câu A hơi khó
\(A=2+2^2+2^3+2^4+...+2^{2003}+2^{2004}\)
\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{2003}\cdot\left(2+1\right)\)
\(=3\cdot\left(2+2^3+...+2^{2003}\right)⋮3\)
2004 chia hết cho 3 và cho 4 nên ta có thể lập tổ hợp sau:
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{2002}\cdot\left(1+2+4\right)=7\cdot\left(2+2^4+...+2^{2002}\right)\)
=> A chia hết cho 7. (1)
Mặt khác:
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=2\cdot\left(15\right)+2^5\cdot\left(15\right)+...+2^{2001}\cdot\left(15\right)=15\cdot\left(2+2^5+...+2^{2001}\right)\)=> Achia hết cho 15 (2)
A chia hết cho 15 có nghĩa là A cũng chia hết cho 3 (3).
Từ (1) (2) (3) suy ra ĐPCM.
Ta có : A = 2 + 22 + 23 + ... + 22003 + 22004
=> A = (2 + 22) + (23 + 24) + ...... + (22003 + 22004)
=> A = 2.(1 + 2) + 23(1 + 2) + ..... + 22003 (1 + 2)
=> A = 2.3 + 23.3 + ..... + 22003.3
=> A = 3(2 + 23 + ..... + 22003) chia hết cho 3 (đpcm)
\(A=2+2^2+2^3+...+2^{2003}+2^{2004}\)
\( A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+....+2^{2003}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2003}\cdot3\)
\(A=\left(2+2^3+....+2^{2003}\right)\)
\(\Rightarrow A⋮3\)\(\left(đpcm\right)\)