Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)
a) Ta có: \(\sqrt{2021}-\sqrt{2020}\)
\(=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\frac{1}{\sqrt{2020}+\sqrt{2021}}\)
Ta có: \(\sqrt{2020}-\sqrt{2019}\)
\(=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)
\(=\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Ta có: \(\sqrt{2020}+\sqrt{2021}>\sqrt{2019}+\sqrt{2020}\)
\(\Leftrightarrow\frac{1}{\sqrt{2020}+\sqrt{2021}}< \frac{1}{\sqrt{2019}+\sqrt{2020}}\)
hay \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)
b) Ta có: \(\sqrt{2019\cdot2021}\)
\(=\sqrt{\left(2020-1\right)\left(2020+1\right)}\)
\(=\sqrt{2020^2-1}\)
Ta có: \(2020=\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
nên \(\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow\sqrt{2019\cdot2021}< 2020\)
c) Ta có: \(\left(\sqrt{2019}+\sqrt{2021}\right)^2\)
\(=2019+2021+2\cdot\sqrt{2019\cdot2021}\)
\(=4040+2\sqrt{2019\cdot2021}\)
\(=4040+2\cdot\sqrt{2020^2-1}\)
Ta có: \(\left(2\sqrt{2020}\right)^2\)
\(=4\cdot2020\)
\(=4040+2\cdot2020\)
\(=4040+2\cdot\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
\(\Leftrightarrow\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow2\cdot\sqrt{2020^2-1}< 2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow4040+2\cdot\sqrt{2020^2-1}< 4040+2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\)
\(\Leftrightarrow\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
Lời giải:
Áp dụng định lý Fermat nhỏ thì:
$2020^6\equiv 1\pmod 7$
$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$
Có:
$2020\equiv 4\pmod 7$
$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$
$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$
Vậy $A$ chia $7$ dư $4$
Chọn D