Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(T=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{a\cdot\frac{1}{2a}}+2\sqrt{b\cdot\frac{1}{2b}}+2\sqrt{\frac{1}{2a}\cdot\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu "=" khi \(a=b=\frac{1}{\sqrt{2}}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
Áp dụng BĐT Cauchy-schwarz ta có:
\(8\ge x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow x+y\ge4\)
Dấu " = " xảy ra <=> x=y=2
Áp dụng BĐT Cauchy-schwarz ta có:
\(A\ge\frac{4}{x+y}\ge\frac{4}{4}=1\)
Dấu " = " xảy ra <=> x=y=2
Hình như anh kudo shinichi ngược dấu một xíu thì phải ạ: \(8\ge\frac{\left(x+y\right)^2}{2}\Rightarrow\left(x+y\right)\le4\) chứ ạ?Dẫn đến
khúc sau ngược dấu.Nếu em sai thì xin thông ảm cho ạ. Lời giải của em đây:
\(A\ge\frac{4}{x+y}=\frac{16}{4x+4y}\ge\frac{16}{x^2+4+y^2+4}\) (BĐT Cô si hay AM-GM gì đó: \(x^2+4\ge2\sqrt{x^2.4}=2.2.x=4x;...\))
\(=\frac{16}{8+8}=1\).Dấu "=" xảy ra khi x = y = 2.
Vậy min A = 1 khi x =y = 2
Ta có : \(A=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(A=4+\frac{x^2+y^2}{x^2y^2}+\frac{2.\left(x^2+y^2\right)}{xy}=4+\frac{4}{x^2y^2}+\frac{8}{xy}\)
\(A=4\left(\frac{1}{xy}+1\right)^2\)
Mặt khác : \(xy\le\frac{x^2+y^2}{2}=2\Rightarrow\frac{1}{xy}\ge\frac{1}{2}\)
\(\Rightarrow A\ge4\left(\frac{1}{2}+1\right)^2=9\)
Vậy Min A = 9 khi x = y = \(\sqrt{2}\)
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
\(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}=\frac{a^2}{a-a^3}\)
Chứng minh: \(a-a^3\le\frac{2}{3\sqrt{3}}\text{ }\left(#\right)\)
\(\left(#\right)\Leftrightarrow a^3-a+\frac{2}{3\sqrt{3}}\ge0\Leftrightarrow\left(a-\frac{1}{\sqrt{3}}\right)^2\left(x+\frac{2}{\sqrt{3}}\right)\ge0\)
Bất đẳng thức cuối đúng nên có đpcm.
\(\Rightarrow P\ge\frac{1}{\frac{2}{3\sqrt{3}}}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
(Đề có cho \(a,b,c\) dương không bạn? Nếu có thì ta làm như sau:)
Dự đoán \(P\) đạt GTNN tại \(a=b=c=\frac{1}{\sqrt{3}}\), nghĩa là \(\frac{1}{abc}=3\sqrt{3}\).
Vậy ta tách: \(P=9a+9b+9c+\frac{1}{abc}-8\left(a+b+c\right)\)
Áp dụng BĐT Cauchy và BĐT \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) ta có:
\(P\ge4.\sqrt[4]{9^3}-8\sqrt{3}=4\sqrt{3}\). Đẳng thức xảy ra tại \(a=b=c=\frac{1}{\sqrt{3}}\)
Theo đề bài ta có
\(1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow xy\le\frac{1}{4}\)
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
\(=x^2+y^2+\frac{2y}{x}+\frac{2x}{y}+\frac{1}{x^2}+\frac{1}{y^2}\)
\(=\left(x^2+\frac{1}{16x^2}\right)+\left(y^2+\frac{1}{16y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{15}{16}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\ge\frac{1}{2}+\frac{1}{2}+4+\frac{15}{16}.\frac{2}{xy}\)
\(\ge5+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
\(P=a^2+\frac{1}{a}=\frac{a^2}{8}+\frac{1}{a}+\frac{7a^2}{8}\ge2\sqrt{\frac{a^2}{8a}}+\frac{7a^2}{8}\ge2\sqrt{\frac{2^2}{8.2}}+\frac{7.2^2}{8}=\frac{9}{2}\)
Vậy GTNN của P là \(\frac{9}{2}\) khi \(a=2\)