Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 2 + 22 + 23 + 24 + ... + 259 + 260
= (2 + 22) + (23 + 24) + .... + (259 + 260)
= (2 + 22) + 22.(2 + 22) + ... + 258.(2 + 22)
= 6 + 22.6 + ... + 258 . 6
= 6.(1 + 22 + .... + 258)
= 2.3.(1 + 22 + .... + 258) \(⋮\)3
=> A \(⋮\)3 (đpcm)
Lại có : A = 2 + 22 + 23 + 24 + 25 + 26 + ... + 258 + 259 + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= (2 + 22 + 23) + 23. (2 + 22 + 23) + .... + 257. (2 + 22 + 23)
= 14 + 23.14 + .... + 257.14
= 14.(1 + 23 + ... + 257)
= 2.7.(1 + 23 + ... + 257) \(⋮\)7
=> A \(⋮\)7 (đpcm)
\(A=2+2^2+2^3+.....+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+......+\left(2^{59}+2^{60}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+3\right)+....+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+....+2^{59}.3\)
\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\)
\(\Rightarrow A⋮3\)
Ta có : \(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
Từ 1 đến 60 có 60 số gồm 30 số chẵn 30 số lẻ
\(A=\left(2+2^3+...+2^{57}+2^{59}\right)+\left(2^2+2^4+...+2^{58}+2^{60}\right)\)
Ghép các cặp lại với nhau vừa đủ 15 cặp có số mũ lẻ và 15 cặp có số mũ chẵn
\(A=\left[\left(2+2^3\right)+...+\left(2^{57}+2^{59}\right)\right]+\left[\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\right]\)
\(A=\left[2\left(1+2^2\right)+...+2^{57}\left(1+2^2\right)\right]+\left[2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\right]\)
\(A=\left[2.5+...+2^{57}.5\right]+\left[2^2.5+...+2^{58}.5\right]\)chia hết cho 5
Mà 3, 5, 7 nguên tố cùng nhau, A chia hết 3, 5, 7 và 3.5.7=105
=> A chia hết cho 105
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
A=2+22+23+...+260
=(2+22)+(23+24)+...+(259+260)
=2.(1+2)+23.(1+2)+...259.(1+2)
=2.3+23.3+...+259.3
=3.(2+23+...+259) chia hết cho 3 (đpcm)
A=2+22+23+...+260
=(2+22+23)+...+(258+259+260)
=2.(1+2+22)+...+258.(1+2+22)
=2.7+...+258.7
=7.(2+...+258) chia hết cho 7 (đpcm)
A=2+22+23+...+260
=(2+22+23+24)+...+(257+258+259+260)
=2.(1+2+22+23)+...+257.(1+2+22+23)
=2.15+...+257.15
=15.(2+...+257) chia hết cho 15 (đpcm)
chung minh chia het cho 3
ta co khi dung tinh chat phan phoiVA GHEP CAP A=2(1+2)+2^3(1+2)+............................................................+2^59(1+2)
A=2*3+2^3*3+......................................................................+2^59*3
A=3(2+2^3+......................................+2^59)
TU DO SUY RA A CHIA HET CHO 3
CHUNG MINH A CHIA HET CHO 7
TA CO DUNG TINH CHAT PHAN PHOI VA GHEP CAP A=2(1+2+4)+..................................................................+2^58(1+2+4)
A=2*7+...................................................................+2^58*7
A=7(2+...................................+2^58)
TU DO SUY BRA A CHIA HET CHO 7
CHUNG MINH A CHIA HET CHO 15
DUNG TINH CHAT PHAN PHOI VA GHEP CAP
A=2(1+2+4+8)+....................................+2^57(1+2+4+8)
A=2*15+............................................+2^57*15
A=15(2+.....................+2^57)
TỪ ĐÓ SUY RA A CHIA HẾT CHỖ 15
CAI DAU LA GHEP DOI ;THU HAI GHEP 3 ;THU 3 GHEP 4
CHO MÌNH THẬT NHIỀU LIKE NHÉ CẢM ƠN
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!