K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2+2^2+2^3+...+2^{2016}\)

= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)

= \(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{2014}.\left(1+2\right)\)

= \(\left(2+2^3+...+2^{2014}\right)\left(1+2\right)\)

= \(\left(2+2^3+...+2^{2014}\right).3\)\(⋮3\) hay \(A⋮3\)

Tiếp theo bạn chứng minh A\(⋮7\) tương tự như trên nhưng nhóm 3 số vào một ngoặc.

Do \(A⋮3;A⋮7\Rightarrow A⋮3.7=21\) (vì 3 và 7 nguyên tố cùng nhau).

Vậy...

Chúc p hk tốt haha

9 tháng 3 2017

Ta có

A = 2 + 22 + 23 + 24+......+ 22016 (2016 số hạng)

A = (2 + 22 + 23 + 24 + 25 + 26) + (27 + 28 + 29 + 210 + 211 + 212) + .....+ (22011 + 22012 + 22013 + 22014 + 22015 + 22016)

A = 2(1 + 2 + 22 + 23 + 24 + 25) + 27(1 + 2 + 22 + 23 + 24 + 25) + ........+

22011(1 + 2 + 22 + 23 + 24 + 25)

A = 2.63 + 27.63 + ...... + 22011.63

Vì 63 \(⋮\) 21

=> A \(⋮\) 21 (suy ra từ tính chất chia hết của một tổng)

=> điều phải chứng minh

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

16 tháng 12 2015

A=22011+22012+22013+22014+22015+22016

A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25

A=22011.(1+2+22+23+24+25)

A=22011.(1+2+4+8+16+32)

A=22011.63

A=22011.3.21    chia hết cho 21

26 tháng 12 2016

20115524+2105+26589+2356/8968-5689

10 tháng 10 2016

a)A=2+22+...+22016

=(2+22+23)+...+(22014+22015+22016)

=2(1+2+22)+...+22014(1+2+22)

=2*7+...+22014*7

=7*(2+...+22014) chia hết 7

b)A=2+22+...+22016

=(2+22+23+24+25)+....+(22012+22013+22014+22015+22016)

=2(1+2+22+23+24)+...+22012(1+2+22+23+24)

=2*31+....+22012*31

=31*(2+...+22012) chia hết 31

10 tháng 10 2016

a) Ta có:

\(A=2+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+...+2^{2014}.7\)

\(\Rightarrow A=\left(2+...+2^{2014}\right).7⋮7\)

Vậy \(A⋮7\)

21 tháng 10 2017

Từ 1 \(\rightarrow\) 90 có 90 số.

Nhóm thành: 90 : 6 = 15 (nhóm) . Mỗi nhóm có 6 số hạng.

A = (2 + 22 + 23 + 24 + 25 + 26) + ... + (285 + 286 + 287 + 288 + 289 + 290)

A = 126 + ... + 284. (2 + 22 + 23 + 24 + 25 + 26)

A = 126 + ... + 284. 126

A = 126 . (1 + ... + 284)

Do 126 \(⋮\) 21 \(\Rightarrow\) A \(⋮\) 21.

27 tháng 10 2017

ta có:

22+23+24+...+290=2.(1+2+22)+24.(1+2+22)+...+288.(1+2+22)

=2.7+24.7+...+288.7=7.(2+24+...+288) chia hết cho 7 (1)

ta lại có:

2+2+...+290=2.(1+2)+23.(1+2)+...+289.(1+2)=2.3+23.3+...+289.3=3.(2+23+...+289) chia hết cho 3 (2)

Từ (1) và (2) suy ra

2+22+23+...+290 chia hết cho 3 và 7 hay chia hết cho 21