Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21
a)A=2+22+...+22016
=(2+22+23)+...+(22014+22015+22016)
=2(1+2+22)+...+22014(1+2+22)
=2*7+...+22014*7
=7*(2+...+22014) chia hết 7
b)A=2+22+...+22016
=(2+22+23+24+25)+....+(22012+22013+22014+22015+22016)
=2(1+2+22+23+24)+...+22012(1+2+22+23+24)
=2*31+....+22012*31
=31*(2+...+22012) chia hết 31
a) Ta có:
\(A=2+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+...+2^{2014}.7\)
\(\Rightarrow A=\left(2+...+2^{2014}\right).7⋮7\)
Vậy \(A⋮7\)
Từ 1 \(\rightarrow\) 90 có 90 số.
Nhóm thành: 90 : 6 = 15 (nhóm) . Mỗi nhóm có 6 số hạng.
A = (2 + 22 + 23 + 24 + 25 + 26) + ... + (285 + 286 + 287 + 288 + 289 + 290)
A = 126 + ... + 284. (2 + 22 + 23 + 24 + 25 + 26)
A = 126 + ... + 284. 126
A = 126 . (1 + ... + 284)
Do 126 \(⋮\) 21 \(\Rightarrow\) A \(⋮\) 21.
ta có:
22+23+24+...+290=2.(1+2+22)+24.(1+2+22)+...+288.(1+2+22)
=2.7+24.7+...+288.7=7.(2+24+...+288) chia hết cho 7 (1)
ta lại có:
2+2+...+290=2.(1+2)+23.(1+2)+...+289.(1+2)=2.3+23.3+...+289.3=3.(2+23+...+289) chia hết cho 3 (2)
Từ (1) và (2) suy ra
2+22+23+...+290 chia hết cho 3 và 7 hay chia hết cho 21
Ta có: \(2+2^2+2^3+...+2^{2016}\)
= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
= \(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{2014}.\left(1+2\right)\)
= \(\left(2+2^3+...+2^{2014}\right)\left(1+2\right)\)
= \(\left(2+2^3+...+2^{2014}\right).3\)\(⋮3\) hay \(A⋮3\)
Tiếp theo bạn chứng minh A\(⋮7\) tương tự như trên nhưng nhóm 3 số vào một ngoặc.
Do \(A⋮3;A⋮7\Rightarrow A⋮3.7=21\) (vì 3 và 7 nguyên tố cùng nhau).
Vậy...
Chúc p hk tốt
Ta có
A = 2 + 22 + 23 + 24+......+ 22016 (2016 số hạng)
A = (2 + 22 + 23 + 24 + 25 + 26) + (27 + 28 + 29 + 210 + 211 + 212) + .....+ (22011 + 22012 + 22013 + 22014 + 22015 + 22016)
A = 2(1 + 2 + 22 + 23 + 24 + 25) + 27(1 + 2 + 22 + 23 + 24 + 25) + ........+
22011(1 + 2 + 22 + 23 + 24 + 25)
A = 2.63 + 27.63 + ...... + 22011.63
Vì 63 \(⋮\) 21
=> A \(⋮\) 21 (suy ra từ tính chất chia hết của một tổng)
=> điều phải chứng minh