Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 6 + 22(2 + 22) + .... + 298(2 + 22)
A = 6 + 22.6 + ... + 298.6
A = 6.(1 + 22 + ... + 298) \(⋮\)6
A = 20 + 21 + 22 + ... + 2100
A = (20 + 21) + (22 + 23) + ...+ ( 299 + 2100)
A = (20 + 21) + 22 . (20 + 21) + ... + 299 . ( 20 + 21)
A = (20 + 21) . (20 + 22 + ... + 299)
A = 3 . (20 + 22 + ... + 299)
Vì 3 chia hết cho 3 nên 3 . (20 + 22 + ... + 299) chia hết cho 3.
=> A chia hết cho 3.
A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)
= 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)
= 120+3^4.110+....+3^96.120
= 120.(1+3^4+.....+3^96) chia hết cho 120
=> ĐPCM
Tk mk nha
ta co A=(31+32+33+34)+...+(397+398+399+3100)
tớ gợi ý nhiêu đây thôi
\(a,A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)...+\left(2^{99}+2^{100}\right)\)
\(=6+2^2\cdot\left(2+2^2\right)+2^4\cdot\left(2+2^2\right)...+2^{98}\cdot\left(2+2^2\right)\)
\(=6+2^2\cdot6+2^4\cdot6...+2^{98}\cdot6\)
\(=6\cdot\left(1+2^2+2^4+...+2^{98}\right)\)
Vì \(6\cdot\left(1+2^2+2^4+...+2^{98}\right)⋮6\)
nên \(A⋮6\)
\(b,A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^3+2^5\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)
\(=10+2\cdot\left(2+2^3\right)+2^2\cdot\left(2+2^3\right)+...+2^{96}\cdot\left(2+2^3\right)+2^{97}\cdot\left(2+2^3\right)\)
\(=10+2\cdot10+2^2\cdot10+...+2^{96}\cdot10+2^{97}\cdot10\)
\(=10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)\)
Vì \(10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)⋮10\)
nên \(A⋮10\)
#\(Toru\)
\(A=2+2^2+...+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
\(a=2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{99}\right)⋮3\).
thanks , em cũng đang cần !