Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm AB
\(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\)
Phương trình CM có dạng : \(y=ax+b\)
\(\Rightarrow\hept{\begin{cases}-2a+b=-3\\\frac{5}{2}a+b=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\Rightarrow y=x-1}\)
Gọi N là trung điểm BC \(\Rightarrow N\left(1;1\right)\)
Phương trình AN có dạng : \(x=1\)
\(\Rightarrow\) Tọa độ trọng tâm G là nghiệm của hệ
\(\hept{\begin{cases}y=x-1\\x=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow}G=\left(1;0\right)}\)
b) Phương trình hoành độ giao điểm là:
\(2x+6=-x+3\)
\(\Leftrightarrow2x+x=3-6\)
\(\Leftrightarrow3x=-3\)
hay x=-1
Thay x=-1 vào (d), ta được:
\(y=2\cdot\left(-1\right)+6=-2+6=4\)
Vậy: A(-1;4)
dùng công thức : căn của (x1-x2)^2 + (y1-y2)^2 là ra khoảng cách giữa 2 điểm, tìm 3 khoảng cách rồi suy ra tam giác đều