
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ax3= 1x2x3 + 2x3x3+.....+29x30x3 lấy B= 1x2x3+ 2x3x4+......+29x30x31 B- Ax3= 0 + 1x2x3+ 2x3x4+ 28x29x30= B- 29x30x31. Suy ra Ax3= 29x30x31

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=\(1-\frac{1}{9}\)
=\(\frac{8}{9}\)
OK XONG NHỚ CHO MIK NHA
\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)
=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}\)
=\(\frac{8}{9}\)

1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)
\(\Rightarrow5A=1-\frac{1}{8}\)
\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=5\left(1-\frac{1}{8}\right)\)
\(A=5.\frac{7}{8}\)
\(A=\frac{38}{8}\)

\(=1\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)
\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}\)
\(=\frac{1}{3}\)

Bài này là:
\(S = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \hdots + \frac{2}{98 \cdot 99} + \frac{2}{99 \cdot 100}\)
Bước 1: Tách thành phân số đơn giản
Ta có công thức rút gọn:
\(\frac{2}{n \left(\right. n + 1 \left.\right)} = \frac{2}{n} - \frac{2}{n + 1}\)
Bước 2: Viết lại tổng
\(S=\left(\right.\frac{2}{1}-\frac{2}{2}\left.\right)+\left(\right.\frac{2}{2}-\frac{2}{3}\left.\right)+\left(\right.\frac{2}{3}-\frac{2}{4}+\cdots+\left(\right.\frac{2}{99}-\frac{2}{100}\left.\right)\)
Bước 3: Nhận ra dạng telescoping (các số ở giữa triệt tiêu)
Sau khi triệt tiêu:
\(S = 2 - \frac{2}{100}\)
Bước 4: Tính kết quả
\(S = 2 - 0.02 = 1.98\)
Hoặc viết gọn:
\(S = \frac{99}{50}\)
📌 Kết quả cuối:
\(\boxed{\frac{99}{50}hay1.98}\)
2/1x2+2/2x3+......+2/99x100
=2/1-2/2+2/2-2/3+.....+2/99-2/100
=2-2/100
=99/50

Gọi B = 1x2 + 2 x 3 + 3 x 4 + ... + 2016 x2017
3B = 3 x ( 1x2 + 2x3 + 3x4 + ... + 2016x2017)
= 1x2x3 + 2x3x3 + 3x4x3 + ... + 2016x2017x3 )
= 1x2x3 + 2x3x( 4-1) + 3x4x( 5 -2 ) + ... + 2016x2017x( 2018 - 2015)
= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2016x2017x2018 - 2015x2016x2017
= 2016 x2017 x2018
B = 672 x2017 x2018
Mà A = \(\frac{672x2017x2018}{2017x2018}\)
= 672
Vậy A = 672
Ax3= 1x2x3 + 2x3x3+.....+29x30x3
lấy B= 1x2x3+ 2x3x4+......+29x30x31
B- Ax3= 0 + 1x2x3+ 2x3x4+ 28x29x30= B- 29x30x31. Suy ra Ax3= 29x30x31