Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+1+\frac{3}{2}+...+\frac{n}{2}=33\)
\(\Leftrightarrow\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{n}{2}=33\)
\(\Leftrightarrow\frac{1+2+3+...+n}{2}=33\)
Đặt A = \(1+2+3+...+n\)
Số số hạng = \(\frac{n-1}{1}+1=n\)
Tổng = \(\frac{\left(n+1\right)\cdot n}{2}\)
=> \(\frac{\frac{\left(n+1\right)\cdot n}{2}}{2}=33\)
=> \(\frac{\left(n+1\right)\cdot n}{2}=66\)
=> \(\left(n+1\right)\cdot n=132=11\cdot12\)
=> n = 11
Vậy n = 11
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
\(x-\dfrac{1}{4}=\dfrac{5}{6}\times\dfrac{4}{9}\)
<=>\(x-\dfrac{1}{4}=\dfrac{10}{27}\)
<=>\(x=\dfrac{10}{27}+\dfrac{1}{4}=\dfrac{67}{108}\)
có phải ý bạn là:
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{1998}{1999}.\frac{1999}{2000}\)=\(\frac{1.2.3....1998.1999}{2.3.4....1999.2000}\)=\(\frac{1}{2000}\)
( bạn xóa những số có cả ở trên tử và mẫu-câu này mình chỉ giảng thôi)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{1999}{2000}=\frac{1\cdot2\cdot...\cdot1999}{2\cdot3\cdot...\cdot2000}=\frac{1}{2000}\)
Để bước 2 thành bước 3 là mình rút gọn nha.
Bài làm:
Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{99}+\frac{49}{200}\)
\(=\frac{14651}{19800}\)
\(\dfrac{2}{3}\times\left(x+\dfrac{4}{5}\right)=\dfrac{-1}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}:\dfrac{2}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}\times\dfrac{3}{2}\\ x+\dfrac{4}{5}=\dfrac{-1}{2}\\ x=\dfrac{-1}{2}-\dfrac{4}{5}\\ x=\dfrac{-5}{10}-\dfrac{8}{10}\\ x=\dfrac{-13}{10}\)
\(\dfrac{2}{3}.\left(x+\dfrac{4}{5}\right)=-\dfrac{1}{3}\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}:\dfrac{2}{3}\right)\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}.\dfrac{3}{2}\right)=-\dfrac{1}{2}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)-\dfrac{4}{5}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)+\left(-\dfrac{4}{5}\right)\)
\(x\) \(=-\dfrac{13}{10}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{20}{27}\)
hay x=20/27+1/4=107/108