K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

Bạn xem lại đề bài dùm

27 tháng 2 2019

Giả sử trong 2019 số trên không có 2 số nào nào bằng nhau

Không mất tính tổng quát : g/s : \(a_{2019}>...>a_2>a_1\ge1\)

=> \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2019}^2}\le\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}=2-\frac{1}{2019}< 2\)Vô lí với giả thiết

Vậy điều giả sử là sai

Vậy trong 2019 số tồn tại ít nhất 2 số bằng nhau

4 tháng 12 2019

Em kiểm tra lại đề bài nhé!

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2019}}{a_{2020}}=\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\)

=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2019}}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)

=> \(\frac{a_1}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)

8 tháng 12 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có;

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}=\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\)(1)

Ta có:

         \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}\Rightarrow\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\frac{a_1\cdot a_2\cdot...a_{2018}}{a_2\cdot a_3\cdot...\cdot a_{2019}}=\frac{a_1}{a_{2019}}\)(2)

Từ (1) và (2) suy ra

\(\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\left(\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\right)^{2018}\)(3)

Từ (1), (2), (3) suy ra điều phải chứng minh

23 tháng 5 2019

Link bài tham khảo nè bạn

23 tháng 5 2019

vào câu hỏi tương tự ấy. có đó. 

11 tháng 11 2016

Ta có 

\(\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{2008}}{a_1}=\frac{a_1+...+a_{12}+...+a_{2008}}{a_2+a_3+...+a_1}=1\)

Từ đó a1 = a2 = a= ... = a2008

\(\Rightarrow N=\frac{a^2_1+a^2_2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{2008a^2_1}{\left(2008a_1\right)^2}=\frac{1}{2008}\)

11 tháng 11 2016

alibaba mình nghĩ là thay dấu + là dấu = sẽ đúng hơn

13 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2007}}{a_{2008}}=\frac{a_{2008}}{a_1}=\frac{a_1+a_2+...+a_{2007}+a_{2008}}{a_2+a_3+...+a_{2008}+a_1}=1\)

Do đó : \(a_1=a_2=...=a_{2007}=a_{2008}\)

\(\Rightarrow\)\(N=\frac{a_1^2+a_2^2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{a_1^2+a_1^2+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}=\frac{2018a_1^2}{2018^2a_1^2}=\frac{1}{2018}\)

Vậy \(N=\frac{1}{2018}\)

Chúc bạn học tốt ~