K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=(m;2m+1); B=[1;7]

Để A giao B bằng rỗng thì m<2m+1 và (2m+1<1 hoặc m>7)

=>m>-1 và (m<0 hoặc m>7)

=>-1<m<0 hoặc m>7

26 tháng 9 2020

Điều kiện tồn tại của A là: 3m-1<3m+7 <=> -1<7 (luôn đúng)

Để A giao B = \(\varnothing\)

\(\Leftrightarrow\orbr{\begin{cases}3m+7\le-1\\3m-1\ge1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m\le\frac{-8}{3}\\m\ge\frac{2}{3}\end{cases}}\)

Vậy \(m\in(-\infty;\frac{-8}{3}]U[\frac{2}{3};+\infty)\)

a: Để A giao B là rỗng thì \(m< 3m+3\)

\(\Leftrightarrow-2m< 3\)

hay \(m>-\dfrac{3}{2}\)

10 tháng 8 2023

Để B tồn tại \(\Leftrightarrow2m< 3m+1\Leftrightarrow m>-1\)

TH1: \(10\le3m+1\) \(\Leftrightarrow m\ge3\)

\(A\cap B=[2m;10)\) có đúng ba số nguyên khi \(6< 2m\le7\) \(\Leftrightarrow3< m\le\dfrac{7}{2}\) ( tm đk )

TH2: \(3m+1< 10\) \(\Leftrightarrow m< 3\)

\(A\cap B=\left[2m;3m+1\right]\) có đúng ba số nguyên khi 

Trường hợp m nguyên thì \(2m+2=3m+1\Leftrightarrow m=1\) (thỏa mãn)

Trường hợp m là số thực thì rộng lắm...

12 tháng 12 2021

a: \(A\cap B=\varnothing\)

\(A\cup B=\left[-2;7\right]\)

A\B=[-2;0]

B\A=[1;7]

Để A giao B khác rỗng thì \(\left[{}\begin{matrix}2< m+1\\m+4>-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m>-7\end{matrix}\right.\)

16 tháng 1 2018

Đáp án B

7 tháng 7 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2-4mx+3m^2+1=2x+3m-2\)

\(\Leftrightarrow x^2-2x\left(2m+1\right)+3m^2-3m+3=0\) (1)

Để (P) và (d) cắt nhau tại hai điểm M;N khi pt (1) có hai nghiệm pb

\(\Leftrightarrow\Delta>0\Leftrightarrow m^2+7m-2>0\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{-7+\sqrt{57}}{2}\\m< \dfrac{-7-\sqrt{57}}{2}\end{matrix}\right.\)

Gọi \(M\left(x_1;2x_1+3m-2\right);N\left(x_2;2x_2+3m-2\right)\) là hai giao điểm của (P) và (d)

\(\Rightarrow\overrightarrow{AM}\left(x_1;2x_1-2\right);\overrightarrow{AN}\left(x_2;2x_2-2\right)\)

(CT tính nhanh diện tích) \(S_{AMN}=\dfrac{1}{2}\left|x_1\left(2x_2-2\right)-x_2\left(2x_1-2\right)\right|\)\(=\dfrac{1}{2}\left|-2x_1+2x_2\right|=\left|x_2-x_1\right|=4\)

\(\Rightarrow\left(x_2-x_1\right)^2=16\)

\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_1x_2=16\)\(\Leftrightarrow\left(4m+2\right)^2-4\left(3m^2-3m+3\right)=16\)

\(\Leftrightarrow4m^2+28m-24=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-7+\sqrt{73}}{2}\\m=\dfrac{-7-\sqrt{73}}{2}\end{matrix}\right.\)(tm)

Vậy...