![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
có câu này là câu tương tự nè bạn tự tham khảo nha,mình đang vội
https://olm.vn/hoi-dap/question/720924.html
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Chữ số tận cùng của \(21\)là \(1\)nên chữ số tận cùng của \(21^x\)với \(x\)là số tự nhiên là \(1\).
Chữ số tận cùng của tổng \(M\)là chữ số tận cùng của \(1+1+1+...+1+1=10\)là chữ số \(0\).
Do đó \(M\)chia hết cho \(10\)nên \(M\)chia hết cho \(2\)và \(5\).
b) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)
\(Q=6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+...+6^{97}\left(1+6+6^2\right)\)
\(Q=\left(1+6+6^2\right)\left(6+6^4+...+6^{97}\right)\)
\(Q=43\left(6+6^4+...+6^{97}\right)⋮43\).
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ:6A= 1.6+6.6+6.6^2+..........+6^1000.6
6A= 6+6^2+6^3+ +6^1000+6^1001
A=1+6+6^2+........+6^1000
6A-A=6^1001-1
vì 6^1001 chia hết cho 6:;1 chia 6 dư 5 suy ra A chia 6 dư 5
![](https://rs.olm.vn/images/avt/0.png?1311)
6:5 dư 1
6 mũ 2 :5 dư 1
.........................
6 mũ 2016 : 5 dư 1
Vậy số dư của A khi chia 5 là:
1.(2016-1):1+1)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = 21+22+23+24+....+2100
A có 100 số hạng, nhóm 3 số vào 1 nhóm ta được 99 nhóm và thừa 1 số hạng
=> A = 21 + (22+23+24)+(25+26+27)+.....+(298+299+2100)
=> A = 2 + 22(1+2+22) + 25(1+2+22) +......+ 298(1+2+22)
=> A = 2 + 22.7 + 25.7 +......+ 298.7
=> A = 2 + 7.(22 + 25 +....+ 298)
Có 7.(22 + 25 +....+ 298) chia hết cho 7
Mà 2 chia 7 dư 2
=> 2 + 7.(22 + 25 +....+ 298) chia 7 dư 2
=> A chia 7 dư 2
??? Ơ A cho thừa hả?