K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

A=\(\frac{\left(49+1\right).49}{2}=1225\)

B/3=4100/3=1336,6666666666666....

Từ trên ta suy ra A<B/3

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

AH
Akai Haruma
Giáo viên
17 tháng 11 2023

Lời giải:

Tổng U là tổng của các số cách đều 4 đơn vị.

Số số hạng: $(218-2):4+1=55$ 

Tổng U là: $(218+2).55:2=6050$

Vì $4100< 6050< 6150$ nên ta có đpcm.

b. $U=6050$ có tận cùng là 0 nên chia hết cho 10.

12 tháng 1 2017

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

25 tháng 9 2017

a/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+............+\left(3^{49}+3^{50}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+............+3^{49}\left(1+3\right)\)

\(=3.4+3^3.4+...............+3^{49}.4\)

\(=4\left(3+3^3+...........+3^{49}\right)⋮4\)

\(\Leftrightarrow A⋮4\left(đpcm\right)\)

b/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^9\right)+........+\left(+3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+........+3^{47}\left(1+3+3^2+3^3\right)\)

\(=3.40+3^5.40+.........+3^{47}.40\)

\(=40\left(3+3^5+...........+3^{47}\right)⋮10\)

\(\Leftrightarrow A⋮10\left(đpcm\right)\)

25 tháng 9 2017

Bạn lấy 1 và 3, 2 và 4, 5 và 7....48 và 50 cộng với nhau có tổng chia hết cho 10 Suy ra a chia hết cho 10