Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:
1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)
2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)
3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)
4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)
Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
b. Với giải thiết cho như câu a. CMR:
1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)
2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)
3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)
4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)
Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)
a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)
b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)
Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của
a. AI và BC
b. IB và CA
c. IC và AB
8/ Giả sử N(xN;yN)
Cách 1:\(\overrightarrow{BA}=\left(-2;6\right);\overrightarrow{CN}=\left(x_N-3;y_n-4\right)\)
vì tứ giác ABCN là hbh
=> \(\overrightarrow{BA}=\overrightarrow{CN}\Rightarrow\left\{{}\begin{matrix}x_N-3=-2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)
=> N(1;10)
Cách 2:
\(\overrightarrow{AN}=\left(x_N+1;y_N-4\right);\overrightarrow{BC}=\left(2;6\right)\)
ABCN là hbh => \(\overrightarrow{AN}=\overrightarrow{BC}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N+1=2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)
vậy....
9/ giả sử I(xI;yI)
\(\overrightarrow{IA}=\left(-1-x_I;4-y_I\right)\)
\(\overrightarrow{IB}=\left(1-x_I;-2-y_I\right)\Rightarrow2\overrightarrow{IB}=\left(2-2x_I;-4-2y_I\right)\)
vì \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)
=> \(\left\{{}\begin{matrix}-1-x_I+2-2x_I=0\\4-y_I-4-2y_I=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1}{3}\\y_I=0\end{matrix}\right.\)
vậy.......
10/ xác đinh vt JA;vt 2JB; vt -4JC rồi thay vào
6/
Giả sử: E(xE;0) (E thuộc Ox)
A,B,E thẳng hàng => tồn tại số thực k(k khác 0) để \(\overrightarrow{AE}=k\cdot\overrightarrow{AB}\)
Ta có: \(\overrightarrow{AE}=\left(x_E+1;-4\right)\)
\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow k\cdot\overrightarrow{AB}=\left(2k;-6k\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_E+1=2k\\-4=-6k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\k=\frac{2}{3}\end{matrix}\right.\)
Vậy E(\(\frac{1}{3};0\)) thoả mãn \(\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AB}\) để 3 điểm A,B,E thẳng hàng
7/ F thuộc Oy, giải sử F(0;yF)
làm tương tự (6)