K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

hihuihhihiuiuiiuuhihuihihuiuhiihuihihuihihu

28 tháng 2 2019

tui bt làm

23 tháng 2 2021

\(\frac{1}{2}.\frac{2}{3}.\)\(...\frac{99}{100}=\frac{1.2.....99}{2.3.....100}=\frac{1.\left(2.....99\right)}{\left(2.3.....99\right).100}=\frac{1}{100}\)

23 tháng 2 2021

Phạm Phương Bảo Khuê . bạn giải chi tiết giúp mình với

7 tháng 8 2017

A = 1 + 3 + 32 + 33 + ... + 399

3A = 3 + 32 + 33 + .. + 3100

3A -A = 3 + 32 + 3+ ... + 3100 - 1 - 3 - 32 - 399

2A = 3100 - 1

B - 2A = 3100 - ( 3100 - 1 ) = 1

14 tháng 2 2019

c)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)

\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có  7 số 1)

\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(7+1-\frac{1}{8}=\frac{63}{8}\)

Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé

Chúc bạn học tốt !!!

3 tháng 10 2016

Tham khảo tại link này nha : dog

[ Toán 7] Tính A: $A=1+3+3^2+....+3^{100} $ | HOCMAI Forum - Cộng đồng học sinh Việt Nam

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!

13 tháng 9 2020

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)

3 tháng 1 2019

Giải giùm tớ (-209)-401+12