K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 11 2021

Bài 1: 

\(S=1+3^2+3^4+...+3^{2020}\)

\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)

\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)

\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)

Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).

DD
30 tháng 11 2021

Bài 2: 

\(A=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)

29 tháng 12 2016

Hình như là số 3

29 tháng 12 2016

chữ số 1

đây là toán lớp 5 chứ

27 tháng 4 2016

=> 3A=3^2+3^3+...+3^2017

=> 3A-A=3^2017-3

=> 2A=3^2017-3

=>A=(3^2017-3):2

27 tháng 4 2016

nhân 3

20 tháng 7 2016

Vì A chia 25 dư 1 nên A chỉ có tận cùng là:01,26,51,76

Trong 4 số chỉ có số 51 chia 4 dư 3 

nên A có tận cùng là:51

20 tháng 7 2016

bạn nào làm được thì giúp mình luôn

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:

$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$

$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$

$M+3M=3^{2018}-1$
$4M=3^{2018}-1$

$16M=4(3^{2018}-1)$

Ta thấy: $3^4=81\equiv 1\pmod {10}$

$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$

$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$

Vậy $16M$ tận cùng là $2$