Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
Mà \(2B+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)
a)
B = 3 + 32 + 33 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
⇒ 2B = 3101 - 3
⇒ 2B + 3 = 3101 - 3 + 3
⇒ 3n = 3101
⇒ n = 101
Vậy n = 101
B = 3 + 32 + 33 + ... + 32014 + 32015
3B = 3( 3 + 32 + 33 + ... + 32014 + 32015 )
3B = 32 + 33 + ... + 32015 + 32016
2B = 3B - B
= 32 + 33 + ... + 32015 + 32016 - ( 3 + 32 + 33 + ... + 32014 + 32015 )
= 32 + 33 + ... + 32015 + 32016 - 3 - 32 - 33 - ... - 32014 - 32015
= 32016 - 3
2B + 3 = 3x
<=> 32016 - 3 + 3 = 3x
<=> 32016 = 3x
<=> x = 2016
\(B+1=3^{2015}+3^{2014}+...+3^3+3^2+3+1\)
\(\Leftrightarrow2\left(B+1\right)=\left(3-1\right)\left(3^{2015}+3^{2014}+...+3^3+3^2+3+1\right)\)
\(\Leftrightarrow2B+2=3^{2016}-1\Leftrightarrow2B+3=3^{2016}\)
Vậy để \(2B+3=3^x\)thì x = 2016.
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+3^4+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
Lời giải:
$B=3+3^2+3^3+...+3^{2014}+3^{2015}$
$3B=3^2+3^3+3^4+....+3^{2015}+3^{2016}$
$\Rightarrow 2B=3B-B=3^{2016}-3$
$\Rightarrow 2B+3=3^{2016}$ là lũy thừa của $3$
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
Ta có :
\(S=1+3+3^2+....+3^{2014}\)
\(\Rightarrow\left(3-1\right)A=\left(3-1\right)1+\left(3-1\right)3+\left(3-1\right)3^2+....+\left(3-1\right)3^{2014}\)
\(\Rightarrow2A=3-1+3-3^2+....+3^{2015}-3^{2014}\)
\(\Rightarrow2A=3^{2015}-1\)
\(\Rightarrow2B-2A=3^{2015}-\left(3^{2015}-1\right)\)
\(\Rightarrow2B-2A=1\)
\(\Rightarrow2\left(B-A\right)=1\)
\(\Rightarrow B-A=\frac{1}{2}\)
S = 1 + 3 + 32 + ... + 32014
= > ( 3 - 1 ) A = ( 3 - 1 ) 1 + ( 3 - 1 ) 3 + ( 3 - 1 ) 32 + ... + ( 3 - 1 ) 32014
= > 2A = 3 - 1 + 3 - 32 + ... + 32015 - 32014
= > 2A = 32015 - 1
= > 2B - 2A = 32015 - ( 32015 - 1 )
= > 2B - 2A = 1
= > 2 ( B - A ) = 1
= > B - A = \(\frac{1}{2}\)
Vậy B - A = \(\frac{1}{2}\)