K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

vi  ước chung lớn nhất của 2 số đó bằng 1

19 tháng 10 2016

\(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

Thấy: \(2n+1=\frac{2\left(2n+1\right)}{2}\)

Dễ dàng chứng minh được: \(\text{Ư}C\left(n\left(n+1\right);2\left(2n+1\right)\right)=1\)

Như vậy ta đã chứng minh xong đề bài.

11 tháng 3 2018

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n \(⋮2\)

=> ( n + 1 ) x n : 2  \(⋮1\), n > 1 

=>  a là số nguyên tố  

31 tháng 12 2018

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n ⋮2

=> ( n + 1 ) x n : 2  ⋮1, n > 1 

=>  a là số nguyên tố  

20 tháng 12 2022

Hi

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$

$b=2n+1$

Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.

$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$

Có:

$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$

Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý) 

Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)

Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau. 

28 tháng 12 2018

Gọi d là ước chung lớn nhất của a và b

\(\Rightarrow a⋮d;b⋮d\) \(\Rightarrow8a⋮d;b^2⋮d\) \(\Rightarrow b^2-8a⋮d\)

Ta có : \(a=1+2+3+...+n\) 

\(\Rightarrow a=\frac{\left[\left(n-1\right)\div1+1\right]\left(n+1\right)}{2}\) 

\(\Rightarrow a=\frac{n\left(n+1\right)}{2}\) 

\(\Rightarrow a=\frac{n^2+n}{2}\)  

\(\Rightarrow8a=\frac{n^2+n}{2}.8=4n^2+4n\) (1)

Ta có : \(b=2n+1\) 

\(\Rightarrow b^2=\left(2n+1\right)^2=\left(2n+1\right)\left(2n+1\right)=4n^2+4n+1\) (2)

Từ (1) và (2) suy ra : \(b^2-8a=\left(4n^2+4n+1\right)-\left(4n^2+4n\right)=1\) 

Mà \(b^2-8a⋮d\) 

Do đó \(1⋮d\) 

\(\Rightarrow d=1\) 

Mà d là ước chung lớn nhất của a và b 

Vậy a và b là 2 số nguyên tố cùng nhau

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới