K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:

$A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+....+(\frac{3}{2})^{2012}$

$\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}$

$\Rightarrow \frac{3}{2}(A-\frac{1}{2}) - (A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$\Rightarrow A=2(\frac{3}{2})^{2013}-\frac{5}{2}$

$\Rightarrow A-B=2(\frac{3}{2})^{2013}-\frac{5}{2}- \frac{1}{2}.(\frac{3}{2})^{2013}$

$\Rightarrow A-B=\frac{3}{2}(\frac{3}{2})^{2013}-\frac{5}{2}=(\frac{3}{2})^{2014}-\frac{5}{2}$

6 tháng 4 2015

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

1 tháng 10 2017

Trần Thị Loan tại sao lại + 5/2?

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
Ta có:

\(A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2012}\)

\(\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}\\ \Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}\)

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$A-\frac{1}{2}=2(\frac{3}{2})^{2013}-3$

$A=2(\frac{3}{2})^{2013}-2,5$

$\Rightarrow A-B=2(\frac{3}{2})^{2013}-2,5-(\frac{3}{2})^{2013}:2$

$=\frac{3}{2}(\frac{3}{2})^{2013}-2,5=(\frac{3}{2})^{2014}-2,5$

2 tháng 5 2017

cái (3/2)^2013:2  đáu mũ là sao 

2 tháng 5 2017

B = (3/2)^2013  :   2

25 tháng 8

oi baka

27 tháng 9 2016

Ta có: 

\(A=1+3+3^2+...+3^{2012}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2013}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2013}\right)-\left(1+3+3^2+...+3^{2012}\right)\)

\(\Rightarrow2A=3^{2013}-1\)

\(\Rightarrow A=\left(3^{2013}-1\right):2\)

Do \(B=3^{2013}:2\)

\(\Rightarrow B-A=3^{2013}:2-\left(3^{2013}-1\right):2\)

\(\Rightarrow B-A=\left(3^{2013}-3^{2013}+1\right):2\)

\(\Rightarrow B-A=1:2=\frac{1}{2}\)

Vậy \(B-A=\frac{1}{2}\)