Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
a) đặt tên biểu thức là A. Ta có :
A = 1.2+2.3+3.4+...+99.100
3A = 1.2.3+2.3.3+3.4.3+...+99.100.3
3A = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
A = 99.100.101 : 3
A = 333300
b) đặt tên biểu thức là B ta có :
B= 1.2+2.3+3.4+...+n.(n+1)
3B = 1.2.3+2.3.3+3.4.3+...+n.(n+1).3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).[ (n+2) - ( n -1 ) ]
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n+1).(n+2) - (n-1).n.(n+1)
B = n.(n+1).(n+2) : 3
\(A=1\cdot2+2\cdot3+...+99\cdot100\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot3+...+99\cdot100\cdot3\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101-1\cdot2\cdot3-...-98\cdot99\cdot100=\)
\(3\cdot A=99\cdot100\cdot101\)
\(A=99\cdot100\cdot101\div3=333300\)
CCâu b tương tự
S=-2+3^2(1-3)+.......3^98(1-3)=-2+3^2.(-2)......3^98.(-2)= -2(1+3^2+3^4+......3^98) bên trong ngoặc là tổng có quy luật.