Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(5x+3^4\right).6^8=6^9.3^4\)
\(=>6x+3^4=3^4.6^9:6^8\)
\(=>6x+3^4=3^4.6\)
\(=>6x=6.3^4-3^4\)
\(=>6x=0\)
\(=>x=0:6\)
\(=>x=0\)
a/(5x + 34).68=69.34
(5x + 34) = 69:68.34
5x + 81 = 6.81
5x = 6.81 - 81
5x = 486 - 81
5x = 425
x = 425:5
x = 85
b/92 - 2x = 2.42- 3.4 + 120:15
92 - 2x = 2.16 - 12 + 8
92 - 2x = 32 - 12 + 8
92 - 2x = 28
2x = 92 - 28
2x = 64
x = 64:2
x = 32
c/53.(3x + 2) : 13 = 103: (135:134)
125.(3x + 2) : 13 = 1000:13
125.(3x+2) = 1000:13.13
125.(3x+2) = 1000
3x + 2 = 1000:125
3x + 2 = 8
3x = 8 - 2
3x = 6
x = 6:3
x = 2
Bạn nhớ tick cho mình nhé!
42.83 = (22)2.(23)3 = 24.29 = 213
93.272 = (32)3.(33)2 = 36.36 = 312
82.253 = (23)2.(52)3 = 26.56 = (2.5)6 = 106
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}$
$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}$
$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2014-2013}{2013.2014}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}$
$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.....................
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
Đặt \(B=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
\(\text{Ta có: }n^2>n^2-1=\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}\)
Vậy .............