\(ℕ^∗\)

CM ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

\(B=1+2+3+...+n\Rightarrow2B=n\left(n+1\right)\)

\(A=1^{2005}+2^{2005}+3^{2005}+...+n^{2005}\)

\(\Rightarrow2A=\left(1^{2005}+n^{2005}\right)+\left[2^{2005}+\left(n-1\right)^{2005}\right]+...+\)\(\left[\left(n-1\right)^{2005}+2^{2005}\right]+\left(n^{2005}+1^{2005}\right)\)

Các biểu thức trong dấu ngoặc đều chia hết cho n + 1 nên:

\(2A⋮\left(n+1\right)\)                      (1)

Lại có: \(2A=\left[1^{2005}+\left(n-1\right)^{2005}\right]+\left[2^{2005}+\left(n-2\right)^{2005}\right]+...+\) \(\left[\left(n-1\right)^{2005}+1^{2005}\right]+2n^{2005}\)

Các biểu thức trong dấu ngoặc đều chia hết cho n nên: 

\(2A⋮n\)       (2)

Vì n và n + 1 là 2 số nguyên tố cùng nhau nên từ (1)(2) \(\Rightarrow2A⋮n\left(n+1\right)=2B\)

Vậy \(A⋮B\)

10 tháng 12 2019

Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Không mất tính tổng quát, ta lấy \(a=-b\), ta có:

\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)

\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)

Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)

\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)

Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)

10 tháng 12 2019

Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.

14 tháng 9 2017

\(18x^2y^2\left(?\right)4x^2y\)

câu b)

\(\left(b\right)6x^3-9x^2=3x^2\left(x-3\right)\)

\(\left(c\right)4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

23 tháng 9 2017

chỗ ? của bạn là dấu nhân đó. (.)

8 tháng 6 2016

Đăng từng bài một rồi tui làm cho~

Nhìn như này hoa mắt lắm :(

8 tháng 6 2016

làm hộ mình đi

a: \(A=\dfrac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}=2005\)

b: \(B=\dfrac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=2004\)

1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

5 tháng 12 2016

Thau abc = 2005 vào đề bài ta có:

N = abc.a/ab+abc.a+abc + b/bc+b+abc + c/ac+c+1

N = a^2bc/ab(1+ac+c) + b/b(c+1+ac) + c/ac+c+1

N = ac/1+ac+c + 1/(c+1+ac) + c/ac+c+1

N = ac+1+c/ac+1+c = 1

=> đpcm

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

\(a+b+c=0\Rightarrow a=-b-c\)

\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)

\(=2bc\)

\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu b:

Thay $2005=abc$ ta có:

\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)

Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$

(đpcm)

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)

\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)

\(\Rightarrow A>B\)

16 tháng 9 2018

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)

\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)

\(B=\frac{2005^3-1}{2005^2+2006}\)

\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)

Tham khảo nhé~