K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

dấu này là mũ hay là gì ? ^^^^^

3 tháng 8 2015

=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100

=1-1/2-1/99-1/98=2327/4851

1 tháng 8 2016

\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)

\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)

\(=\frac{2327}{4851}\)

1 tháng 8 2016

Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100

     4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100

          =(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)

          =(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)

         =(1/1-1/99)-(1/2-1/100)

         4A=98/99 - 99/100

         A= (98/99-99/100) :4

14 tháng 5 2018

Đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{98.100}\)

A=\(\left(\dfrac{1}{1.3}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+...+\dfrac{1}{98.100}\right)\)

A=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right)+\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)

A=\(\dfrac{98}{99}-\dfrac{49}{100}\)

A=\(\dfrac{4949}{9900}\)

Mà \(\dfrac{3}{4}=\dfrac{7425}{9900}\)

Vậy A<\(\dfrac{3}{4}\)

14 tháng 5 2018

Bạn hãy tính \(\dfrac{1}{1.3}+...+\dfrac{1}{98.100}\)= \(\dfrac{4949}{9900}\) sau đo chỉ cần chứng minh nó nhỏ hơn bằng cách quy đồng .

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)