Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2+1/2.3+1/3.4+......+1/2003.2004=1/1-1/2+1/2-1/3+1/3-1/4+......+1/2003-1/2004
=1/1-1/2004
=2003/2004
1/1.2+1/2.3+1/3.4+.......1/2003.2004
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
Ta có:32n=(32)n=9n
(-3)2n+1=[(-3)2]n+1=9n+1
Mà 9n+1<9n nên 32n<(-3)2n+1
Vậy:32n<(-3)2n+1
Theo đề ta có a=5k+2
b=5q+3
13a+11b=13(5k+2)+11(5q+3)=65k+26+55q+33=(65k+55q)+59
Ta có 65k+55q chia hết cho 5 vì mỗi số hạng đều chia hết cho 5
59 chia 5 dư 4
Vậy 13a+11b chia 5 dư 4
(1+1/2)+(1+1/3).(1+1/4) ... (1+1/99)=3/2.4/3.5/4....100/99
(3.4.5.....100)/(2.3....99)=100/2=50
\(\frac{2}{5}.\frac{1}{x}+\frac{1}{x}.2+\frac{2}{5}=0,5\)
\(\Rightarrow\frac{2}{5x}+\frac{2}{x}+\frac{2}{5}=\frac{1}{2}\)
\(\Rightarrow2.\left(\frac{1}{5x}+\frac{1}{x}+\frac{1}{5}\right)=\frac{1}{2}\)
\(\Rightarrow\frac{1}{5x}+\frac{5}{5x}+\frac{x}{5x}=\frac{1}{2}:2=\frac{1}{4}\)
\(\Rightarrow\frac{1+5+x}{5x}=\frac{1}{4}\)
\(\Rightarrow4.\left(1+5+x\right)=5x\)
\(\Rightarrow4+20+4x=5x\)
\(\Rightarrow24+4x=5x\)
\(\Rightarrow5x-4x=24\)
\(\Rightarrow x=24\)