Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
Ta có : A = 1 + 3 + 5 + ... + ( 2n - 1 ) = ( 2n - 1 +1 ) . n : 2 = 2n . n : 2 = 2n : 2 .n = n . n = n^2
=> A luôn luôn là số chính phương ( của n )
Xin lỗi, mk chỉ biết bài 3:
Nhân cả 2 vế với 3 ta có:
3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3
3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )
3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29
3S= 30.31.32
S = 30.31.32 : 3
S = 9920
Vậy S = 9920
Có : A = 111...100...0 ( n chữ số 1 và n chữ số 0 ) + 111...1 ( n chữ số 1 ) + 222....2 ( n chữ số 2 )
Đặt 111....1 ( n chữ số 1 ) = a ( a thuộc N )
=> A = a.10^n+a-2a = a.10^n-a = a.(9a+1)-a = 9a^2+a-a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM
Tk mk nha
Có : A = 111...100...0 ( n chữ số 1 và n chữ số 0 ) + 111...1 ( n chữ số 1 ) + 222....2 ( n chữ số 2 )
Đặt 111....1 ( n chữ số 1 ) = a ( a thuộc N )
=> A = a.10^n+a-2a = a.10^n-a = a.(9a+1)-a = 9a^2+a-a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM